Bueno721Drop | Address 0xcb4844d1c2d8d83b29daa74777bd979ac95c95fc | PolygonScan (2023)

Contract Source Code (Solidity Standard Json-Input format)

Similar Contracts

More Options

File 1 of 24 : OwnableUpgradeable.sol

// SPDX-License-Identifier: MIT// OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)pragma solidity ^0.8.0;import "../utils/ContextUpgradeable.sol";import "../proxy/utils/Initializable.sol";/** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ function __Ownable_init() internal onlyInitializing { __Ownable_init_unchained(); } function __Ownable_init_unchained() internal onlyInitializing { _transferOwnership(_msgSender()); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { require(owner() == _msgSender(), "Ownable: caller is not the owner"); } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[49] private __gap;}

File 2 of 24 : PaymentSplitterUpgradeable.sol

(Video) How POLYGONSCAN Works For Beginners! POLYGON MATIC Blockchain, Blocks, Tokens, Transactions!

// SPDX-License-Identifier: MIT// OpenZeppelin Contracts (last updated v4.8.0) (finance/PaymentSplitter.sol)pragma solidity ^0.8.0;import "../token/ERC20/utils/SafeERC20Upgradeable.sol";import "../utils/AddressUpgradeable.sol";import "../utils/ContextUpgradeable.sol";import "../proxy/utils/Initializable.sol";/** * @title PaymentSplitter * @dev This contract allows to split Ether payments among a group of accounts. The sender does not need to be aware * that the Ether will be split in this way, since it is handled transparently by the contract. * * The split can be in equal parts or in any other arbitrary proportion. The way this is specified is by assigning each * account to a number of shares. Of all the Ether that this contract receives, each account will then be able to claim * an amount proportional to the percentage of total shares they were assigned. The distribution of shares is set at the * time of contract deployment and can't be updated thereafter. * * `PaymentSplitter` follows a _pull payment_ model. This means that payments are not automatically forwarded to the * accounts but kept in this contract, and the actual transfer is triggered as a separate step by calling the {release} * function. * * NOTE: This contract assumes that ERC20 tokens will behave similarly to native tokens (Ether). Rebasing tokens, and * tokens that apply fees during transfers, are likely to not be supported as expected. If in doubt, we encourage you * to run tests before sending real value to this contract. */contract PaymentSplitterUpgradeable is Initializable, ContextUpgradeable { event PayeeAdded(address account, uint256 shares); event PaymentReleased(address to, uint256 amount); event ERC20PaymentReleased(IERC20Upgradeable indexed token, address to, uint256 amount); event PaymentReceived(address from, uint256 amount); uint256 private _totalShares; uint256 private _totalReleased; mapping(address => uint256) private _shares; mapping(address => uint256) private _released; address[] private _payees; mapping(IERC20Upgradeable => uint256) private _erc20TotalReleased; mapping(IERC20Upgradeable => mapping(address => uint256)) private _erc20Released; /** * @dev Creates an instance of `PaymentSplitter` where each account in `payees` is assigned the number of shares at * the matching position in the `shares` array. * * All addresses in `payees` must be non-zero. Both arrays must have the same non-zero length, and there must be no * duplicates in `payees`. */ function __PaymentSplitter_init(address[] memory payees, uint256[] memory shares_) internal onlyInitializing { __PaymentSplitter_init_unchained(payees, shares_); } function __PaymentSplitter_init_unchained(address[] memory payees, uint256[] memory shares_) internal onlyInitializing { require(payees.length == shares_.length, "PaymentSplitter: payees and shares length mismatch"); require(payees.length > 0, "PaymentSplitter: no payees"); for (uint256 i = 0; i < payees.length; i++) { _addPayee(payees[i], shares_[i]); } } /** * @dev The Ether received will be logged with {PaymentReceived} events. Note that these events are not fully * reliable: it's possible for a contract to receive Ether without triggering this function. This only affects the * reliability of the events, and not the actual splitting of Ether. * * To learn more about this see the Solidity documentation for * https://solidity.readthedocs.io/en/latest/contracts.html#fallback-function[fallback * functions]. */ receive() external payable virtual { emit PaymentReceived(_msgSender(), msg.value); } /** * @dev Getter for the total shares held by payees. */ function totalShares() public view returns (uint256) { return _totalShares; } /** * @dev Getter for the total amount of Ether already released. */ function totalReleased() public view returns (uint256) { return _totalReleased; } /** * @dev Getter for the total amount of `token` already released. `token` should be the address of an IERC20 * contract. */ function totalReleased(IERC20Upgradeable token) public view returns (uint256) { return _erc20TotalReleased[token]; } /** * @dev Getter for the amount of shares held by an account. */ function shares(address account) public view returns (uint256) { return _shares[account]; } /** * @dev Getter for the amount of Ether already released to a payee. */ function released(address account) public view returns (uint256) { return _released[account]; } /** * @dev Getter for the amount of `token` tokens already released to a payee. `token` should be the address of an * IERC20 contract. */ function released(IERC20Upgradeable token, address account) public view returns (uint256) { return _erc20Released[token][account]; } /** * @dev Getter for the address of the payee number `index`. */ function payee(uint256 index) public view returns (address) { return _payees[index]; } /** * @dev Getter for the amount of payee's releasable Ether. */ function releasable(address account) public view returns (uint256) { uint256 totalReceived = address(this).balance + totalReleased(); return _pendingPayment(account, totalReceived, released(account)); } /** * @dev Getter for the amount of payee's releasable `token` tokens. `token` should be the address of an * IERC20 contract. */ function releasable(IERC20Upgradeable token, address account) public view returns (uint256) { uint256 totalReceived = token.balanceOf(address(this)) + totalReleased(token); return _pendingPayment(account, totalReceived, released(token, account)); } /** * @dev Triggers a transfer to `account` of the amount of Ether they are owed, according to their percentage of the * total shares and their previous withdrawals. */ function release(address payable account) public virtual { require(_shares[account] > 0, "PaymentSplitter: account has no shares"); uint256 payment = releasable(account); require(payment != 0, "PaymentSplitter: account is not due payment"); // _totalReleased is the sum of all values in _released. // If "_totalReleased += payment" does not overflow, then "_released[account] += payment" cannot overflow. _totalReleased += payment; unchecked { _released[account] += payment; } AddressUpgradeable.sendValue(account, payment); emit PaymentReleased(account, payment); } /** * @dev Triggers a transfer to `account` of the amount of `token` tokens they are owed, according to their * percentage of the total shares and their previous withdrawals. `token` must be the address of an IERC20 * contract. */ function release(IERC20Upgradeable token, address account) public virtual { require(_shares[account] > 0, "PaymentSplitter: account has no shares"); uint256 payment = releasable(token, account); require(payment != 0, "PaymentSplitter: account is not due payment"); // _erc20TotalReleased[token] is the sum of all values in _erc20Released[token]. // If "_erc20TotalReleased[token] += payment" does not overflow, then "_erc20Released[token][account] += payment" // cannot overflow. _erc20TotalReleased[token] += payment; unchecked { _erc20Released[token][account] += payment; } SafeERC20Upgradeable.safeTransfer(token, account, payment); emit ERC20PaymentReleased(token, account, payment); } /** * @dev internal logic for computing the pending payment of an `account` given the token historical balances and * already released amounts. */ function _pendingPayment( address account, uint256 totalReceived, uint256 alreadyReleased ) private view returns (uint256) { return (totalReceived * _shares[account]) / _totalShares - alreadyReleased; } /** * @dev Add a new payee to the contract. * @param account The address of the payee to add. * @param shares_ The number of shares owned by the payee. */ function _addPayee(address account, uint256 shares_) private { require(account != address(0), "PaymentSplitter: account is the zero address"); require(shares_ > 0, "PaymentSplitter: shares are 0"); require(_shares[account] == 0, "PaymentSplitter: account already has shares"); _payees.push(account); _shares[account] = shares_; _totalShares = _totalShares + shares_; emit PayeeAdded(account, shares_); } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[43] private __gap;}

File 3 of 24 : IERC2981Upgradeable.sol

// SPDX-License-Identifier: MIT// OpenZeppelin Contracts (last updated v4.6.0) (interfaces/IERC2981.sol)pragma solidity ^0.8.0;import "../utils/introspection/IERC165Upgradeable.sol";/** * @dev Interface for the NFT Royalty Standard. * * A standardized way to retrieve royalty payment information for non-fungible tokens (NFTs) to enable universal * support for royalty payments across all NFT marketplaces and ecosystem participants. * * _Available since v4.5._ */interface IERC2981Upgradeable is IERC165Upgradeable { /** * @dev Returns how much royalty is owed and to whom, based on a sale price that may be denominated in any unit of * exchange. The royalty amount is denominated and should be paid in that same unit of exchange. */ function royaltyInfo(uint256 tokenId, uint256 salePrice) external view returns (address receiver, uint256 royaltyAmount);}

File 4 of 24 : Initializable.sol

// SPDX-License-Identifier: MIT// OpenZeppelin Contracts (last updated v4.8.0) (proxy/utils/Initializable.sol)pragma solidity ^0.8.2;import "../../utils/AddressUpgradeable.sol";/** * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect. * * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in * case an upgrade adds a module that needs to be initialized. * * For example: * * [.hljs-theme-light.nopadding] * ``` * contract MyToken is ERC20Upgradeable { * function initialize() initializer public { * __ERC20_init("MyToken", "MTK"); * } * } * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable { * function initializeV2() reinitializer(2) public { * __ERC20Permit_init("MyToken"); * } * } * ``` * * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}. * * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity. * * [CAUTION] * ==== * Avoid leaving a contract uninitialized. * * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed: * * [.hljs-theme-light.nopadding] * ``` * /// @custom:oz-upgrades-unsafe-allow constructor * constructor() { * _disableInitializers(); * } * ``` * ==== */abstract contract Initializable { /** * @dev Indicates that the contract has been initialized. * @custom:oz-retyped-from bool */ uint8 private _initialized; /** * @dev Indicates that the contract is in the process of being initialized. */ bool private _initializing; /** * @dev Triggered when the contract has been initialized or reinitialized. */ event Initialized(uint8 version); /** * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope, * `onlyInitializing` functions can be used to initialize parent contracts. * * Similar to `reinitializer(1)`, except that functions marked with `initializer` can be nested in the context of a * constructor. * * Emits an {Initialized} event. */ modifier initializer() { bool isTopLevelCall = !_initializing; require( (isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1), "Initializable: contract is already initialized" ); _initialized = 1; if (isTopLevelCall) { _initializing = true; } _; if (isTopLevelCall) { _initializing = false; emit Initialized(1); } } /** * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be * used to initialize parent contracts. * * A reinitializer may be used after the original initialization step. This is essential to configure modules that * are added through upgrades and that require initialization. * * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer` * cannot be nested. If one is invoked in the context of another, execution will revert. * * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in * a contract, executing them in the right order is up to the developer or operator. * * WARNING: setting the version to 255 will prevent any future reinitialization. * * Emits an {Initialized} event. */ modifier reinitializer(uint8 version) { require(!_initializing && _initialized < version, "Initializable: contract is already initialized"); _initialized = version; _initializing = true; _; _initializing = false; emit Initialized(version); } /** * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the * {initializer} and {reinitializer} modifiers, directly or indirectly. */ modifier onlyInitializing() { require(_initializing, "Initializable: contract is not initializing"); _; } /** * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call. * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized * to any version. It is recommended to use this to lock implementation contracts that are designed to be called * through proxies. * * Emits an {Initialized} event the first time it is successfully executed. */ function _disableInitializers() internal virtual { require(!_initializing, "Initializable: contract is initializing"); if (_initialized < type(uint8).max) { _initialized = type(uint8).max; emit Initialized(type(uint8).max); } } /** * @dev Internal function that returns the initialized version. Returns `_initialized` */ function _getInitializedVersion() internal view returns (uint8) { return _initialized; } /** * @dev Internal function that returns the initialized version. Returns `_initializing` */ function _isInitializing() internal view returns (bool) { return _initializing; }}

File 5 of 24 : ERC2981Upgradeable.sol

// SPDX-License-Identifier: MIT// OpenZeppelin Contracts (last updated v4.7.0) (token/common/ERC2981.sol)pragma solidity ^0.8.0;import "../../interfaces/IERC2981Upgradeable.sol";import "../../utils/introspection/ERC165Upgradeable.sol";import "../../proxy/utils/Initializable.sol";/** * @dev Implementation of the NFT Royalty Standard, a standardized way to retrieve royalty payment information. * * Royalty information can be specified globally for all token ids via {_setDefaultRoyalty}, and/or individually for * specific token ids via {_setTokenRoyalty}. The latter takes precedence over the first. * * Royalty is specified as a fraction of sale price. {_feeDenominator} is overridable but defaults to 10000, meaning the * fee is specified in basis points by default. * * IMPORTANT: ERC-2981 only specifies a way to signal royalty information and does not enforce its payment. See * https://eips.ethereum.org/EIPS/eip-2981#optional-royalty-payments[Rationale] in the EIP. Marketplaces are expected to * voluntarily pay royalties together with sales, but note that this standard is not yet widely supported. * * _Available since v4.5._ */abstract contract ERC2981Upgradeable is Initializable, IERC2981Upgradeable, ERC165Upgradeable { function __ERC2981_init() internal onlyInitializing { } function __ERC2981_init_unchained() internal onlyInitializing { } struct RoyaltyInfo { address receiver; uint96 royaltyFraction; } RoyaltyInfo private _defaultRoyaltyInfo; mapping(uint256 => RoyaltyInfo) private _tokenRoyaltyInfo; /** * @dev See {IERC165-supportsInterface}. */ function supportsInterface(bytes4 interfaceId) public view virtual override(IERC165Upgradeable, ERC165Upgradeable) returns (bool) { return interfaceId == type(IERC2981Upgradeable).interfaceId || super.supportsInterface(interfaceId); } /** * @inheritdoc IERC2981Upgradeable */ function royaltyInfo(uint256 _tokenId, uint256 _salePrice) public view virtual override returns (address, uint256) { RoyaltyInfo memory royalty = _tokenRoyaltyInfo[_tokenId]; if (royalty.receiver == address(0)) { royalty = _defaultRoyaltyInfo; } uint256 royaltyAmount = (_salePrice * royalty.royaltyFraction) / _feeDenominator(); return (royalty.receiver, royaltyAmount); } /** * @dev The denominator with which to interpret the fee set in {_setTokenRoyalty} and {_setDefaultRoyalty} as a * fraction of the sale price. Defaults to 10000 so fees are expressed in basis points, but may be customized by an * override. */ function _feeDenominator() internal pure virtual returns (uint96) { return 10000; } /** * @dev Sets the royalty information that all ids in this contract will default to. * * Requirements: * * - `receiver` cannot be the zero address. * - `feeNumerator` cannot be greater than the fee denominator. */ function _setDefaultRoyalty(address receiver, uint96 feeNumerator) internal virtual { require(feeNumerator <= _feeDenominator(), "ERC2981: royalty fee will exceed salePrice"); require(receiver != address(0), "ERC2981: invalid receiver"); _defaultRoyaltyInfo = RoyaltyInfo(receiver, feeNumerator); } /** * @dev Removes default royalty information. */ function _deleteDefaultRoyalty() internal virtual { delete _defaultRoyaltyInfo; } /** * @dev Sets the royalty information for a specific token id, overriding the global default. * * Requirements: * * - `receiver` cannot be the zero address. * - `feeNumerator` cannot be greater than the fee denominator. */ function _setTokenRoyalty( uint256 tokenId, address receiver, uint96 feeNumerator ) internal virtual { require(feeNumerator <= _feeDenominator(), "ERC2981: royalty fee will exceed salePrice"); require(receiver != address(0), "ERC2981: Invalid parameters"); _tokenRoyaltyInfo[tokenId] = RoyaltyInfo(receiver, feeNumerator); } /** * @dev Resets royalty information for the token id back to the global default. */ function _resetTokenRoyalty(uint256 tokenId) internal virtual { delete _tokenRoyaltyInfo[tokenId]; } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[48] private __gap;}

File 6 of 24 : draft-IERC20PermitUpgradeable.sol

// SPDX-License-Identifier: MIT// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol)pragma solidity ^0.8.0;/** * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. */interface IERC20PermitUpgradeable { /** * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens, * given ``owner``'s signed approval. * * IMPORTANT: The same issues {IERC20-approve} has related to transaction * ordering also apply here. * * Emits an {Approval} event. * * Requirements: * * - `spender` cannot be the zero address. * - `deadline` must be a timestamp in the future. * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner` * over the EIP712-formatted function arguments. * - the signature must use ``owner``'s current nonce (see {nonces}). * * For more information on the signature format, see the * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP * section]. */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external; /** * @dev Returns the current nonce for `owner`. This value must be * included whenever a signature is generated for {permit}. * * Every successful call to {permit} increases ``owner``'s nonce by one. This * prevents a signature from being used multiple times. */ function nonces(address owner) external view returns (uint256); /** * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view returns (bytes32);}

File 7 of 24 : IERC20Upgradeable.sol

// SPDX-License-Identifier: MIT// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)pragma solidity ^0.8.0;/** * @dev Interface of the ERC20 standard as defined in the EIP. */interface IERC20Upgradeable { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `from` to `to` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom( address from, address to, uint256 amount ) external returns (bool);}

File 8 of 24 : SafeERC20Upgradeable.sol

// SPDX-License-Identifier: MIT// OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/utils/SafeERC20.sol)pragma solidity ^0.8.0;import "../IERC20Upgradeable.sol";import "../extensions/draft-IERC20PermitUpgradeable.sol";import "../../../utils/AddressUpgradeable.sol";/** * @title SafeERC20 * @dev Wrappers around ERC20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */library SafeERC20Upgradeable { using AddressUpgradeable for address; function safeTransfer( IERC20Upgradeable token, address to, uint256 value ) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value)); } function safeTransferFrom( IERC20Upgradeable token, address from, address to, uint256 value ) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value)); } /** * @dev Deprecated. This function has issues similar to the ones found in * {IERC20-approve}, and its usage is discouraged. * * Whenever possible, use {safeIncreaseAllowance} and * {safeDecreaseAllowance} instead. */ function safeApprove( IERC20Upgradeable token, address spender, uint256 value ) internal { // safeApprove should only be called when setting an initial allowance, // or when resetting it to zero. To increase and decrease it, use // 'safeIncreaseAllowance' and 'safeDecreaseAllowance' require( (value == 0) || (token.allowance(address(this), spender) == 0), "SafeERC20: approve from non-zero to non-zero allowance" ); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value)); } function safeIncreaseAllowance( IERC20Upgradeable token, address spender, uint256 value ) internal { uint256 newAllowance = token.allowance(address(this), spender) + value; _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } function safeDecreaseAllowance( IERC20Upgradeable token, address spender, uint256 value ) internal { unchecked { uint256 oldAllowance = token.allowance(address(this), spender); require(oldAllowance >= value, "SafeERC20: decreased allowance below zero"); uint256 newAllowance = oldAllowance - value; _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } } function safePermit( IERC20PermitUpgradeable token, address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) internal { uint256 nonceBefore = token.nonces(owner); token.permit(owner, spender, value, deadline, v, r, s); uint256 nonceAfter = token.nonces(owner); require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed"); } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). */ function _callOptionalReturn(IERC20Upgradeable token, bytes memory data) private { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that // the target address contains contract code and also asserts for success in the low-level call. bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed"); if (returndata.length > 0) { // Return data is optional require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed"); } }}

File 9 of 24 : AddressUpgradeable.sol

(Video) 🚨 Polygon Compromised? How to revoke token approvals

// SPDX-License-Identifier: MIT// OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol)pragma solidity ^0.8.1;/** * @dev Collection of functions related to the address type */library AddressUpgradeable { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract. * * _Available since v4.8._ */ function verifyCallResultFromTarget( address target, bool success, bytes memory returndata, string memory errorMessage ) internal view returns (bytes memory) { if (success) { if (returndata.length == 0) { // only check isContract if the call was successful and the return data is empty // otherwise we already know that it was a contract require(isContract(target), "Address: call to non-contract"); } return returndata; } else { _revert(returndata, errorMessage); } } /** * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason or using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { _revert(returndata, errorMessage); } } function _revert(bytes memory returndata, string memory errorMessage) private pure { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } }}

File 10 of 24 : ContextUpgradeable.sol

// SPDX-License-Identifier: MIT// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)pragma solidity ^0.8.0;import "../proxy/utils/Initializable.sol";/** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */abstract contract ContextUpgradeable is Initializable { function __Context_init() internal onlyInitializing { } function __Context_init_unchained() internal onlyInitializing { } function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[50] private __gap;}

File 11 of 24 : ERC165Upgradeable.sol

// SPDX-License-Identifier: MIT// OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol)pragma solidity ^0.8.0;import "./IERC165Upgradeable.sol";import "../../proxy/utils/Initializable.sol";/** * @dev Implementation of the {IERC165} interface. * * Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check * for the additional interface id that will be supported. For example: * * ```solidity * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { * return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId); * } * ``` * * Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation. */abstract contract ERC165Upgradeable is Initializable, IERC165Upgradeable { function __ERC165_init() internal onlyInitializing { } function __ERC165_init_unchained() internal onlyInitializing { } /** * @dev See {IERC165-supportsInterface}. */ function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { return interfaceId == type(IERC165Upgradeable).interfaceId; } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[50] private __gap;}

File 12 of 24 : IERC165Upgradeable.sol

// SPDX-License-Identifier: MIT// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)pragma solidity ^0.8.0;/** * @dev Interface of the ERC165 standard, as defined in the * https://eips.ethereum.org/EIPS/eip-165[EIP]. * * Implementers can declare support of contract interfaces, which can then be * queried by others ({ERC165Checker}). * * For an implementation, see {ERC165}. */interface IERC165Upgradeable { /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section] * to learn more about how these ids are created. * * This function call must use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool);}

File 13 of 24 : MerkleProof.sol

// SPDX-License-Identifier: MIT// OpenZeppelin Contracts (last updated v4.8.0) (utils/cryptography/MerkleProof.sol)pragma solidity ^0.8.0;/** * @dev These functions deal with verification of Merkle Tree proofs. * * The tree and the proofs can be generated using our * https://github.com/OpenZeppelin/merkle-tree[JavaScript library]. * You will find a quickstart guide in the readme. * * WARNING: You should avoid using leaf values that are 64 bytes long prior to * hashing, or use a hash function other than keccak256 for hashing leaves. * This is because the concatenation of a sorted pair of internal nodes in * the merkle tree could be reinterpreted as a leaf value. * OpenZeppelin's JavaScript library generates merkle trees that are safe * against this attack out of the box. */library MerkleProof { /** * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree * defined by `root`. For this, a `proof` must be provided, containing * sibling hashes on the branch from the leaf to the root of the tree. Each * pair of leaves and each pair of pre-images are assumed to be sorted. */ function verify( bytes32[] memory proof, bytes32 root, bytes32 leaf ) internal pure returns (bool) { return processProof(proof, leaf) == root; } /** * @dev Calldata version of {verify} * * _Available since v4.7._ */ function verifyCalldata( bytes32[] calldata proof, bytes32 root, bytes32 leaf ) internal pure returns (bool) { return processProofCalldata(proof, leaf) == root; } /** * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt * hash matches the root of the tree. When processing the proof, the pairs * of leafs & pre-images are assumed to be sorted. * * _Available since v4.4._ */ function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) { bytes32 computedHash = leaf; for (uint256 i = 0; i < proof.length; i++) { computedHash = _hashPair(computedHash, proof[i]); } return computedHash; } /** * @dev Calldata version of {processProof} * * _Available since v4.7._ */ function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) { bytes32 computedHash = leaf; for (uint256 i = 0; i < proof.length; i++) { computedHash = _hashPair(computedHash, proof[i]); } return computedHash; } /** * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a merkle tree defined by * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}. * * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details. * * _Available since v4.7._ */ function multiProofVerify( bytes32[] memory proof, bool[] memory proofFlags, bytes32 root, bytes32[] memory leaves ) internal pure returns (bool) { return processMultiProof(proof, proofFlags, leaves) == root; } /** * @dev Calldata version of {multiProofVerify} * * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details. * * _Available since v4.7._ */ function multiProofVerifyCalldata( bytes32[] calldata proof, bool[] calldata proofFlags, bytes32 root, bytes32[] memory leaves ) internal pure returns (bool) { return processMultiProofCalldata(proof, proofFlags, leaves) == root; } /** * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false * respectively. * * CAUTION: Not all merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer). * * _Available since v4.7._ */ function processMultiProof( bytes32[] memory proof, bool[] memory proofFlags, bytes32[] memory leaves ) internal pure returns (bytes32 merkleRoot) { // This function rebuild the root hash by traversing the tree up from the leaves. The root is rebuilt by // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of // the merkle tree. uint256 leavesLen = leaves.length; uint256 totalHashes = proofFlags.length; // Check proof validity. require(leavesLen + proof.length - 1 == totalHashes, "MerkleProof: invalid multiproof"); // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop". bytes32[] memory hashes = new bytes32[](totalHashes); uint256 leafPos = 0; uint256 hashPos = 0; uint256 proofPos = 0; // At each step, we compute the next hash using two values: // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we // get the next hash. // - depending on the flag, either another value for the "main queue" (merging branches) or an element from the // `proof` array. for (uint256 i = 0; i < totalHashes; i++) { bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++]; bytes32 b = proofFlags[i] ? leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++] : proof[proofPos++]; hashes[i] = _hashPair(a, b); } if (totalHashes > 0) { return hashes[totalHashes - 1]; } else if (leavesLen > 0) { return leaves[0]; } else { return proof[0]; } } /** * @dev Calldata version of {processMultiProof}. * * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details. * * _Available since v4.7._ */ function processMultiProofCalldata( bytes32[] calldata proof, bool[] calldata proofFlags, bytes32[] memory leaves ) internal pure returns (bytes32 merkleRoot) { // This function rebuild the root hash by traversing the tree up from the leaves. The root is rebuilt by // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of // the merkle tree. uint256 leavesLen = leaves.length; uint256 totalHashes = proofFlags.length; // Check proof validity. require(leavesLen + proof.length - 1 == totalHashes, "MerkleProof: invalid multiproof"); // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop". bytes32[] memory hashes = new bytes32[](totalHashes); uint256 leafPos = 0; uint256 hashPos = 0; uint256 proofPos = 0; // At each step, we compute the next hash using two values: // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we // get the next hash. // - depending on the flag, either another value for the "main queue" (merging branches) or an element from the // `proof` array. for (uint256 i = 0; i < totalHashes; i++) { bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++]; bytes32 b = proofFlags[i] ? leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++] : proof[proofPos++]; hashes[i] = _hashPair(a, b); } if (totalHashes > 0) { return hashes[totalHashes - 1]; } else if (leavesLen > 0) { return leaves[0]; } else { return proof[0]; } } function _hashPair(bytes32 a, bytes32 b) private pure returns (bytes32) { return a < b ? _efficientHash(a, b) : _efficientHash(b, a); } function _efficientHash(bytes32 a, bytes32 b) private pure returns (bytes32 value) { /// @solidity memory-safe-assembly assembly { mstore(0x00, a) mstore(0x20, b) value := keccak256(0x00, 0x40) } }}

File 14 of 24 : Bueno721Drop.sol

// SPDX-License-Identifier: MITpragma solidity ^0.8.17;import "erc721a-upgradeable/contracts/extensions/ERC721AQueryableUpgradeable.sol";import "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol";import "@openzeppelin/contracts-upgradeable/token/common/ERC2981Upgradeable.sol";import "@openzeppelin/contracts/utils/cryptography/MerkleProof.sol";import "@openzeppelin/contracts-upgradeable/finance/PaymentSplitterUpgradeable.sol";import "operator-filter-registry/src/upgradeable/OperatorFiltererUpgradeable.sol";import "./ICommon.sol";struct PhaseSettings { /// @dev phase supply. This can be released to public by ending the phase. uint64 maxSupply; /// @dev tracks the total amount minted in the phase uint64 amountMinted; /// @dev wallet maximum for the phase uint64 maxPerWallet; /// @dev merkle root for the phase (if applicable, otherwise bytes32(0)) bytes32 merkleRoot; /// @dev whether the phase is active bool isActive; /// @dev price for the phase (or free if 0) uint256 price;}struct BaseSettings { /// @dev public sale supply. ending a phase will carry supply into this value uint64 maxSupply; /// @dev global wallet maximum across all phases (including public) uint64 maxPerWallet; /// @dev tracks the total amount minted in the public sale uint64 amountMinted; /// @dev price for the public sale (or free if 0) uint256 price;}struct SaleState { uint64 numPhases; mapping(uint256 => PhaseSettings) phases;}error PhaseNotActive();error InvalidPhase();/// @author Bueno.art/// @title ERC-721 Multi-Phase Drop Contractcontract Bueno721Drop is ERC721AQueryableUpgradeable, OwnableUpgradeable, ERC2981Upgradeable, PaymentSplitterUpgradeable, OperatorFiltererUpgradeable{ string public _baseTokenURI; SaleState public saleState; BaseSettings public baseSettings; uint256 public maxSupply; address[] public withdrawAddresses; mapping(address => mapping(uint256 => uint64)) private amountMintedForPhase; bool public isPublicActive; bool private allowBurning; event TokensMinted(address indexed to, uint256 quantity); event TokenBurned(address indexed owner, uint256 tokenId); event TokensAirdropped(uint256 numRecipients, uint256 numTokens); event PhasesActivated(uint256[] phaseIds, bool activatedPublic); event PhasesPaused(uint256[] phaseIds, bool pausedPublic); event PhaseEnded(uint256 phaseIds); event BurnStatusChanged(bool burnActive); event PhaseSettingsUpdated(uint256 phaseId, PhaseSettings settings); event BaseSettingsUpdated(BaseSettings settings); event BaseURIUpdated(string baseURI); event RoyaltyUpdated(address royaltyAddress, uint96 royaltyAmount); /// @custom:oz-upgrades-unsafe-allow constructor constructor() { _disableInitializers(); } function initialize( string memory _name, string memory _symbol, string memory _baseUri, RoyaltySettings calldata _royaltySettings, PhaseSettings[] calldata _phases, BaseSettings calldata _baseSettings, PaymentSplitterSettings calldata _paymentSplitterSettings, uint256 _maxIntendedSupply, bool _allowBurning, address _deployer, address _operatorFilter ) public initializerERC721A initializer { __ERC721A_init(_name, _symbol); __Ownable_init(); __PaymentSplitter_init( _paymentSplitterSettings.payees, _paymentSplitterSettings.shares ); uint64 numPhases = uint64(_phases.length); uint256 supplyValidationCount = _baseSettings.maxSupply; for (uint256 i = 0; i < numPhases; ) { saleState.phases[i] = _phases[i]; supplyValidationCount += _phases[i].maxSupply; // numPhases has a maximum value of 2^64 - 1 unchecked { ++i; } } require( supplyValidationCount == _maxIntendedSupply, "Supply of all phases must equal maxIntendedSupply" ); _baseTokenURI = _baseUri; withdrawAddresses = _paymentSplitterSettings.payees; saleState.numPhases = numPhases; baseSettings = _baseSettings; allowBurning = _allowBurning; maxSupply = _maxIntendedSupply; _setDefaultRoyalty( _royaltySettings.royaltyAddress, _royaltySettings.royaltyAmount ); transferOwnership(_deployer); OperatorFiltererUpgradeable.__OperatorFilterer_init( _operatorFilter, _operatorFilter == address(0) ? false : true // only subscribe if a filter is provided ); } // ========= EXTERNAL MINTING METHODS ========= /** * @notice Mint tokens for an allowlisted phase * @dev Calling this function for a phase that doesn't have an allowlist will fail */ function mintPhaseAllowlist( uint256 phaseIndex, uint64 quantity, bytes32[] calldata proof ) external payable { uint64 updatedAmountMinted = _checkAllowlistPhaseMintConditions( msg.sender, quantity, proof, phaseIndex, msg.value ); _checkGlobalPerWalletMax(msg.sender, quantity); saleState.phases[phaseIndex].amountMinted += quantity; amountMintedForPhase[msg.sender][phaseIndex] = updatedAmountMinted; _mint(msg.sender, quantity); emit TokensMinted(msg.sender, quantity); } /** * @notice Mint tokens for a non-allowlist phase. * @dev Calling this function for a phase that has an allowlist will fail */ function mintPhase(uint256 phaseIndex, uint64 quantity) external payable { uint64 updatedAmountMinted = _checkPhaseMintConditions( msg.sender, quantity, phaseIndex, msg.value ); _checkGlobalPerWalletMax(msg.sender, quantity); saleState.phases[phaseIndex].amountMinted += quantity; amountMintedForPhase[msg.sender][phaseIndex] = updatedAmountMinted; _mint(msg.sender, quantity); emit TokensMinted(msg.sender, quantity); } /** * @notice Mint tokens in the public sale */ function mintPublic(uint64 quantity) external payable { uint64 updatedAmountMinted = _checkPublicMintConditions( quantity, msg.value ); _checkGlobalPerWalletMax(msg.sender, quantity); baseSettings.amountMinted = updatedAmountMinted; _mint(msg.sender, quantity); emit TokensMinted(msg.sender, quantity); } /** * @notice Mint tokens in all possible phases (including public sale) */ function mintBatch( uint64[] calldata quantities, bytes32[][] calldata proofs, uint256[] calldata phaseIndices, uint64 publicQuantity ) external payable { uint256 phaseLength = phaseIndices.length; if ( phaseLength > saleState.numPhases || phaseLength != quantities.length || phaseLength != proofs.length ) { revert InvalidPhase(); } uint256 balance = msg.value; uint256 quantityToMint; for (uint256 i = 0; i < phaseLength; ) { uint64 updatedAmount; uint256 phaseIndex = phaseIndices[i]; uint64 quantity = quantities[i]; bytes32[] calldata proof = proofs[i]; PhaseSettings storage phase = saleState.phases[phaseIndex]; uint256 priceForPhase = phase.price * quantity; // Since price is strictly checked in the _check* functions below, // we have an additional check here to ensure that the balance doesn't underflow if (balance < priceForPhase) { revert InvalidPrice(); } // if the phase has no allowlist, the merkleRoot will be zeroed out. if (phase.merkleRoot == bytes32(0)) { updatedAmount = _checkPhaseMintConditions( msg.sender, quantity, phaseIndex, priceForPhase ); } else { updatedAmount = _checkAllowlistPhaseMintConditions( msg.sender, quantity, proof, phaseIndex, priceForPhase ); } // quantity & phaseLength have a maximum value of 2^64 - 1 // balance underflow is checked above unchecked { saleState.phases[phaseIndex].amountMinted += quantity; amountMintedForPhase[msg.sender][phaseIndex] = updatedAmount; balance -= priceForPhase; quantityToMint += quantity; ++i; } } uint256 totalMintQuantity = quantityToMint; if (publicQuantity > 0) { _checkPublicMintConditions(publicQuantity, balance); // publicQuantity has a max value of 2^64 - 1 unchecked { baseSettings.amountMinted += publicQuantity; totalMintQuantity += publicQuantity; } } _checkGlobalPerWalletMax(msg.sender, totalMintQuantity); _mint(msg.sender, totalMintQuantity); emit TokensMinted(msg.sender, totalMintQuantity); } /** * @notice Burn a token, if the contract allows for it */ function burn(uint256 tokenId) external { if (!allowBurning) { revert BurningNotAllowed(); } _burn(tokenId, true); emit TokenBurned(msg.sender, tokenId); } // ========= OWNER METHODS ========= /** * @notice Perform a batch airdrop for a particular phase. * @dev Minted tokens are pulled from the phase that is specified in the airdropper. */ function airdropForPhase( uint256 phaseIndex, uint64[] calldata quantities, address[] calldata recipients ) external onlyOwner { uint256 numRecipients = recipients.length; uint256 totalAirdropped; if (numRecipients != quantities.length) revert InvalidAirdrop(); PhaseSettings storage phase = saleState.phases[phaseIndex]; for (uint256 i = 0; i < numRecipients; ) { uint64 updatedAmountMinted = phase.amountMinted + quantities[i]; if (updatedAmountMinted > phase.maxSupply) { revert SoldOut(); } // airdrops are not subject to the per-wallet mint limits, // but we track how much is minted for the phase phase.amountMinted = updatedAmountMinted; totalAirdropped += quantities[i]; _mint(recipients[i], quantities[i]); // numRecipients has a maximum value of 2^256 - 1 unchecked { ++i; } } emit TokensAirdropped(numRecipients, totalAirdropped); } /** * @notice Perform a batch airdrop for the public phase. * @dev Minted tokens are pulled from the public phase. */ function airdropPublic( uint64[] calldata quantities, address[] calldata recipients ) external onlyOwner { uint256 numRecipients = recipients.length; uint256 totalAirdropped; if (numRecipients != quantities.length) revert InvalidAirdrop(); for (uint256 i = 0; i < numRecipients; ) { uint64 updatedAmountMinted = baseSettings.amountMinted + quantities[i]; if (updatedAmountMinted > baseSettings.maxSupply) { revert SoldOut(); } // airdrops are not subject to the per-wallet mint limits, // but we track how much is minted for the phase baseSettings.amountMinted = updatedAmountMinted; totalAirdropped += quantities[i]; _mint(recipients[i], quantities[i]); // numRecipients has a maximum value of 2^256 - 1 unchecked { ++i; } } emit TokensAirdropped(numRecipients, totalAirdropped); } /** * @notice Specify which phases are active. * Public sale can be activated by setting `activatePublic` to true. */ function activatePhases( uint256[] calldata phaseIndices, bool activatePublic ) external onlyOwner { uint256 numPhases = phaseIndices.length; // activate all the phases provided in phaseIndices for (uint256 i = 0; i < numPhases; ) { uint256 phaseIndex = phaseIndices[i]; if (phaseIndex >= saleState.numPhases) { // phaseIndex is out of bounds revert InvalidPhase(); } saleState.phases[phaseIndices[i]].isActive = true; // numPhases has a maximum value of 2^256 - 1 unchecked { ++i; } } // calling this function with activatePublic=false only indicates the public sale // is not intended to be activated, but it does not pause it. if (activatePublic) { isPublicActive = true; } emit PhasesActivated(phaseIndices, activatePublic); } /** * @notice Specify which phases are inactive (paused). * Public sale can be paused by setting `pausePublic` to true. * Pausing is separate from ending, since ending permanently closes the phase. */ function pausePhases( uint256[] calldata phaseIndices, bool pausePublic ) external onlyOwner { uint256 numPhases = phaseIndices.length; for (uint256 i = 0; i < numPhases; ) { uint256 phaseIndex = phaseIndices[i]; if (phaseIndex >= saleState.numPhases) { // phaseIndex is out of bounds revert InvalidPhase(); } saleState.phases[phaseIndex].isActive = false; // numPhases has a maximum value of 2^256 - 1 unchecked { ++i; } } // calling this function with pausePublic=false only indicates the public sale // is not intended to be paused, but it does not pause it. if (pausePublic) { isPublicActive = false; } emit PhasesPaused(phaseIndices, pausePublic); } /** * @notice If enabled, the token can be burned, for approved operators. * @dev The burn method will revert unless this is enabled */ function toggleBurning() external onlyOwner { allowBurning = !allowBurning; emit BurnStatusChanged(allowBurning); } /** * @notice Permanently closes a phase by capping the supply & releasing it */ function endPhase(uint256 phaseIndex) public onlyOwner { PhaseSettings storage phase = saleState.phases[phaseIndex]; // if the phase never had supply, there is nothing to do if (phase.maxSupply == 0) { revert InvalidPhase(); } // transfer the remaining supply into the base settings (used for public sale accounting) baseSettings.maxSupply += phase.maxSupply - phase.amountMinted; // remove the supply from the phase phase.maxSupply = 0; emit PhaseEnded(phaseIndex); } function endPhases(uint64[] calldata phaseIndices) external onlyOwner { uint256 phaseIndicesLength = phaseIndices.length; // ensure that phaseIndices argument will only ever be as large as the number of phases if (phaseIndicesLength > saleState.numPhases) { revert InvalidPhase(); } for (uint256 i = 0; i < phaseIndicesLength; ) { endPhase(phaseIndices[i]); // phaseIndicesLength has a maximum value of 2^256 - 1 unchecked { ++i; } } } /** * @notice Updates the minting rules for a particular phase * @dev supply & amountMinted are not changeable */ function updatePhaseSettings( uint256 phaseIndex, PhaseSettings calldata phase ) external onlyOwner { uint64 existingAmountMinted = saleState.phases[phaseIndex].amountMinted; uint64 existingMaxSupply = saleState.phases[phaseIndex].maxSupply; bool existingStatus = saleState.phases[phaseIndex].isActive; saleState.phases[phaseIndex] = phase; // ensure that the amountMinted, maxSupply, and status values cannot be set saleState.phases[phaseIndex].amountMinted = existingAmountMinted; saleState.phases[phaseIndex].maxSupply = existingMaxSupply; saleState.phases[phaseIndex].isActive = existingStatus; emit PhaseSettingsUpdated(phaseIndex, phase); } /** * @notice Updates the the base minting settings * The global maxPerWallet setting applies to all phases * Pricing and other fields will apply to the public sale * * @dev maxSupply & amountMinted are not changeable */ function updateBaseSettings( BaseSettings calldata _baseSettings ) external onlyOwner { uint64 existingMaxSupply = baseSettings.maxSupply; uint64 existingAmountMinted = baseSettings.amountMinted; baseSettings = _baseSettings; // ensure that the maxSupply & amountMinted value cannot be set baseSettings.maxSupply = existingMaxSupply; baseSettings.amountMinted = existingAmountMinted; emit BaseSettingsUpdated(_baseSettings); } /** * @dev Payment can be pulled via PaymentSplitter.release * this method is provided for convenience to release all payee funds */ function withdraw() external onlyOwner { uint256 numAddresses = withdrawAddresses.length; for (uint256 i = 0; i < numAddresses; ) { address payable withdrawAddress = payable(withdrawAddresses[i]); if (releasable(withdrawAddress) > 0) { release(withdrawAddress); } // numAddresses has a maximum value of 2^256 - 1 unchecked { ++i; } } } function setBaseURI(string memory baseURI) external onlyOwner { _baseTokenURI = baseURI; emit BaseURIUpdated(baseURI); } function setRoyaltyInfo( address receiver, uint96 feeBasisPoints ) external onlyOwner { _setDefaultRoyalty(receiver, feeBasisPoints); emit RoyaltyUpdated(receiver, feeBasisPoints); } // ========= VIEW METHODS ========= function _startTokenId() internal view virtual override returns (uint256) { return 1; } function _checkAllowlistPhaseMintConditions( address wallet, uint64 quantity, bytes32[] calldata proof, uint256 phaseIndex, uint256 balance ) internal view returns (uint64) { PhaseSettings storage phase = saleState.phases[phaseIndex]; if (!phase.isActive) { revert PhaseNotActive(); } // there should be a valid merkle root for the phase if (phase.merkleRoot == bytes32(0)) { revert InvalidMintFunction(); } if (phase.amountMinted + quantity > phase.maxSupply) { revert SoldOut(); } if (balance != quantity * phase.price) { revert InvalidPrice(); } if ( !MerkleProof.verify( proof, phase.merkleRoot, keccak256(abi.encodePacked(wallet)) ) ) { revert InvalidProof(); } uint256 amountMinted = amountMintedForPhase[wallet][phaseIndex]; uint256 updatedAmountMinted = amountMinted + quantity; // phases can have a maxPerWallet if ( phase.maxPerWallet > 0 && updatedAmountMinted > phase.maxPerWallet ) { revert ExceedMaxPerWallet(); } return uint64(updatedAmountMinted); } function _checkPhaseMintConditions( address wallet, uint256 quantity, uint256 phaseIndex, uint256 balance ) internal view returns (uint64) { PhaseSettings storage phase = saleState.phases[phaseIndex]; if (!phase.isActive) { revert PhaseNotActive(); } // the phase should not have a merkleRoot if (phase.merkleRoot != bytes32(0)) { revert InvalidMintFunction(); } if (phase.amountMinted + quantity > phase.maxSupply) { revert SoldOut(); } if (balance != quantity * phase.price) { revert InvalidPrice(); } uint256 amountMinted = amountMintedForPhase[wallet][phaseIndex]; uint256 updatedAmountMinted = amountMinted + quantity; // phases can have a maxPerWallet if ( phase.maxPerWallet > 0 && updatedAmountMinted > phase.maxPerWallet ) { revert ExceedMaxPerWallet(); } return uint64(updatedAmountMinted); } function _checkPublicMintConditions( uint256 quantity, uint256 balance ) internal view returns (uint64) { if (!isPublicActive) { revert PhaseNotActive(); } uint256 updatedAmountMinted = baseSettings.amountMinted + quantity; if (updatedAmountMinted > baseSettings.maxSupply) { revert SoldOut(); } if (balance != quantity * baseSettings.price) { revert InvalidPrice(); } return uint64(updatedAmountMinted); } function _checkGlobalPerWalletMax( address wallet, uint256 quantity ) internal view { if ( baseSettings.maxPerWallet > 0 && _numberMinted(wallet) + quantity > baseSettings.maxPerWallet ) { revert ExceedMaxPerWallet(); } } function getDataForPhase( uint256 phaseIndex ) external view returns (PhaseSettings memory) { return saleState.phases[phaseIndex]; } function getMintBalance(address wallet) external view returns (uint256) { return _numberMinted(wallet); } function getAmountMintedForPhase( uint256 phaseIndex, address wallet ) external view returns (uint64) { return amountMintedForPhase[wallet][phaseIndex]; } function getAmountMintedForOwner( address wallet ) external view returns (uint256[] memory) { uint256[] memory amountMintedPerPhase = new uint256[]( saleState.numPhases + 1 ); for (uint64 i = 0; i < saleState.numPhases; ) { amountMintedPerPhase[i] = amountMintedForPhase[wallet][i]; // numPhases has a maximum value of 2^64 - 1 unchecked { ++i; } } amountMintedPerPhase[saleState.numPhases] = _numberMinted(wallet); return amountMintedPerPhase; } /** * @dev See {ERC721-_baseURI}. */ function _baseURI() internal view virtual override returns (string memory) { return _baseTokenURI; } function supportsInterface( bytes4 interfaceId ) public view virtual override(IERC721AUpgradeable, ERC721AUpgradeable, ERC2981Upgradeable) returns (bool) { return ERC721AUpgradeable.supportsInterface(interfaceId) || ERC2981Upgradeable.supportsInterface(interfaceId); } // ========= OPERATOR FILTERER OVERRIDES ========= function setApprovalForAll( address operator, bool approved ) public override(ERC721AUpgradeable, IERC721AUpgradeable) onlyAllowedOperatorApproval(operator) { super.setApprovalForAll(operator, approved); } function approve( address operator, uint256 tokenId ) public payable override(ERC721AUpgradeable, IERC721AUpgradeable) onlyAllowedOperatorApproval(operator) { super.approve(operator, tokenId); } function transferFrom( address from, address to, uint256 tokenId ) public payable override(ERC721AUpgradeable, IERC721AUpgradeable) onlyAllowedOperator(from) { super.transferFrom(from, to, tokenId); } function safeTransferFrom( address from, address to, uint256 tokenId ) public payable override(ERC721AUpgradeable, IERC721AUpgradeable) onlyAllowedOperator(from) { super.safeTransferFrom(from, to, tokenId); } function safeTransferFrom( address from, address to, uint256 tokenId, bytes memory data ) public payable override(ERC721AUpgradeable, IERC721AUpgradeable) onlyAllowedOperator(from) { super.safeTransferFrom(from, to, tokenId, data); }}

File 15 of 24 : ICommon.sol

// SPDX-License-Identifier: MITpragma solidity ^0.8.17;error InvalidPrice();error SoldOut();error ExceedMaxPerWallet();error InvalidProof();error InvalidMintFunction();error InvalidAirdrop();error BurningNotAllowed();struct PaymentSplitterSettings { address[] payees; uint256[] shares;}struct RoyaltySettings { address royaltyAddress; uint96 royaltyAmount;}

File 16 of 24 : ERC721A__Initializable.sol

(Video) How to Verify Smart Contract on PolygonScan (using Remix)

// SPDX-License-Identifier: MITpragma solidity ^0.8.0;/** * @dev This is a base contract to aid in writing upgradeable diamond facet contracts, or any kind of contract that will be deployed * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect. * * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}. * * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity. */import {ERC721A__InitializableStorage} from './ERC721A__InitializableStorage.sol';abstract contract ERC721A__Initializable { using ERC721A__InitializableStorage for ERC721A__InitializableStorage.Layout; /** * @dev Modifier to protect an initializer function from being invoked twice. */ modifier initializerERC721A() { // If the contract is initializing we ignore whether _initialized is set in order to support multiple // inheritance patterns, but we only do this in the context of a constructor, because in other contexts the // contract may have been reentered. require( ERC721A__InitializableStorage.layout()._initializing ? _isConstructor() : !ERC721A__InitializableStorage.layout()._initialized, 'ERC721A__Initializable: contract is already initialized' ); bool isTopLevelCall = !ERC721A__InitializableStorage.layout()._initializing; if (isTopLevelCall) { ERC721A__InitializableStorage.layout()._initializing = true; ERC721A__InitializableStorage.layout()._initialized = true; } _; if (isTopLevelCall) { ERC721A__InitializableStorage.layout()._initializing = false; } } /** * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the * {initializer} modifier, directly or indirectly. */ modifier onlyInitializingERC721A() { require( ERC721A__InitializableStorage.layout()._initializing, 'ERC721A__Initializable: contract is not initializing' ); _; } /// @dev Returns true if and only if the function is running in the constructor function _isConstructor() private view returns (bool) { // extcodesize checks the size of the code stored in an address, and // address returns the current address. Since the code is still not // deployed when running a constructor, any checks on its code size will // yield zero, making it an effective way to detect if a contract is // under construction or not. address self = address(this); uint256 cs; assembly { cs := extcodesize(self) } return cs == 0; }}

File 17 of 24 : ERC721A__InitializableStorage.sol

// SPDX-License-Identifier: MITpragma solidity ^0.8.0;/** * @dev This is a base storage for the initialization function for upgradeable diamond facet contracts **/library ERC721A__InitializableStorage { struct Layout { /* * Indicates that the contract has been initialized. */ bool _initialized; /* * Indicates that the contract is in the process of being initialized. */ bool _initializing; } bytes32 internal constant STORAGE_SLOT = keccak256('ERC721A.contracts.storage.initializable.facet'); function layout() internal pure returns (Layout storage l) { bytes32 slot = STORAGE_SLOT; assembly { l.slot := slot } }}

File 18 of 24 : ERC721AStorage.sol

// SPDX-License-Identifier: MITpragma solidity ^0.8.0;library ERC721AStorage { // Bypass for a `--via-ir` bug (https://github.com/chiru-labs/ERC721A/pull/364). struct TokenApprovalRef { address value; } struct Layout { // ============================================================= // STORAGE // ============================================================= // The next token ID to be minted. uint256 _currentIndex; // The number of tokens burned. uint256 _burnCounter; // Token name string _name; // Token symbol string _symbol; // Mapping from token ID to ownership details // An empty struct value does not necessarily mean the token is unowned. // See {_packedOwnershipOf} implementation for details. // // Bits Layout: // - [0..159] `addr` // - [160..223] `startTimestamp` // - [224] `burned` // - [225] `nextInitialized` // - [232..255] `extraData` mapping(uint256 => uint256) _packedOwnerships; // Mapping owner address to address data. // // Bits Layout: // - [0..63] `balance` // - [64..127] `numberMinted` // - [128..191] `numberBurned` // - [192..255] `aux` mapping(address => uint256) _packedAddressData; // Mapping from token ID to approved address. mapping(uint256 => ERC721AStorage.TokenApprovalRef) _tokenApprovals; // Mapping from owner to operator approvals mapping(address => mapping(address => bool)) _operatorApprovals; } bytes32 internal constant STORAGE_SLOT = keccak256('ERC721A.contracts.storage.ERC721A'); function layout() internal pure returns (Layout storage l) { bytes32 slot = STORAGE_SLOT; assembly { l.slot := slot } }}

File 19 of 24 : ERC721AUpgradeable.sol

// SPDX-License-Identifier: MIT// ERC721A Contracts v4.2.3// Creator: Chiru Labspragma solidity ^0.8.4;import './IERC721AUpgradeable.sol';import {ERC721AStorage} from './ERC721AStorage.sol';import './ERC721A__Initializable.sol';/** * @dev Interface of ERC721 token receiver. */interface ERC721A__IERC721ReceiverUpgradeable { function onERC721Received( address operator, address from, uint256 tokenId, bytes calldata data ) external returns (bytes4);}/** * @title ERC721A * * @dev Implementation of the [ERC721](https://eips.ethereum.org/EIPS/eip-721) * Non-Fungible Token Standard, including the Metadata extension. * Optimized for lower gas during batch mints. * * Token IDs are minted in sequential order (e.g. 0, 1, 2, 3, ...) * starting from `_startTokenId()`. * * Assumptions: * * - An owner cannot have more than 2**64 - 1 (max value of uint64) of supply. * - The maximum token ID cannot exceed 2**256 - 1 (max value of uint256). */contract ERC721AUpgradeable is ERC721A__Initializable, IERC721AUpgradeable { using ERC721AStorage for ERC721AStorage.Layout; // ============================================================= // CONSTANTS // ============================================================= // Mask of an entry in packed address data. uint256 private constant _BITMASK_ADDRESS_DATA_ENTRY = (1 << 64) - 1; // The bit position of `numberMinted` in packed address data. uint256 private constant _BITPOS_NUMBER_MINTED = 64; // The bit position of `numberBurned` in packed address data. uint256 private constant _BITPOS_NUMBER_BURNED = 128; // The bit position of `aux` in packed address data. uint256 private constant _BITPOS_AUX = 192; // Mask of all 256 bits in packed address data except the 64 bits for `aux`. uint256 private constant _BITMASK_AUX_COMPLEMENT = (1 << 192) - 1; // The bit position of `startTimestamp` in packed ownership. uint256 private constant _BITPOS_START_TIMESTAMP = 160; // The bit mask of the `burned` bit in packed ownership. uint256 private constant _BITMASK_BURNED = 1 << 224; // The bit position of the `nextInitialized` bit in packed ownership. uint256 private constant _BITPOS_NEXT_INITIALIZED = 225; // The bit mask of the `nextInitialized` bit in packed ownership. uint256 private constant _BITMASK_NEXT_INITIALIZED = 1 << 225; // The bit position of `extraData` in packed ownership. uint256 private constant _BITPOS_EXTRA_DATA = 232; // Mask of all 256 bits in a packed ownership except the 24 bits for `extraData`. uint256 private constant _BITMASK_EXTRA_DATA_COMPLEMENT = (1 << 232) - 1; // The mask of the lower 160 bits for addresses. uint256 private constant _BITMASK_ADDRESS = (1 << 160) - 1; // The maximum `quantity` that can be minted with {_mintERC2309}. // This limit is to prevent overflows on the address data entries. // For a limit of 5000, a total of 3.689e15 calls to {_mintERC2309} // is required to cause an overflow, which is unrealistic. uint256 private constant _MAX_MINT_ERC2309_QUANTITY_LIMIT = 5000; // The `Transfer` event signature is given by: // `keccak256(bytes("Transfer(address,address,uint256)"))`. bytes32 private constant _TRANSFER_EVENT_SIGNATURE = 0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef; // ============================================================= // CONSTRUCTOR // ============================================================= function __ERC721A_init(string memory name_, string memory symbol_) internal onlyInitializingERC721A { __ERC721A_init_unchained(name_, symbol_); } function __ERC721A_init_unchained(string memory name_, string memory symbol_) internal onlyInitializingERC721A { ERC721AStorage.layout()._name = name_; ERC721AStorage.layout()._symbol = symbol_; ERC721AStorage.layout()._currentIndex = _startTokenId(); } // ============================================================= // TOKEN COUNTING OPERATIONS // ============================================================= /** * @dev Returns the starting token ID. * To change the starting token ID, please override this function. */ function _startTokenId() internal view virtual returns (uint256) { return 0; } /** * @dev Returns the next token ID to be minted. */ function _nextTokenId() internal view virtual returns (uint256) { return ERC721AStorage.layout()._currentIndex; } /** * @dev Returns the total number of tokens in existence. * Burned tokens will reduce the count. * To get the total number of tokens minted, please see {_totalMinted}. */ function totalSupply() public view virtual override returns (uint256) { // Counter underflow is impossible as _burnCounter cannot be incremented // more than `_currentIndex - _startTokenId()` times. unchecked { return ERC721AStorage.layout()._currentIndex - ERC721AStorage.layout()._burnCounter - _startTokenId(); } } /** * @dev Returns the total amount of tokens minted in the contract. */ function _totalMinted() internal view virtual returns (uint256) { // Counter underflow is impossible as `_currentIndex` does not decrement, // and it is initialized to `_startTokenId()`. unchecked { return ERC721AStorage.layout()._currentIndex - _startTokenId(); } } /** * @dev Returns the total number of tokens burned. */ function _totalBurned() internal view virtual returns (uint256) { return ERC721AStorage.layout()._burnCounter; } // ============================================================= // ADDRESS DATA OPERATIONS // ============================================================= /** * @dev Returns the number of tokens in `owner`'s account. */ function balanceOf(address owner) public view virtual override returns (uint256) { if (owner == address(0)) revert BalanceQueryForZeroAddress(); return ERC721AStorage.layout()._packedAddressData[owner] & _BITMASK_ADDRESS_DATA_ENTRY; } /** * Returns the number of tokens minted by `owner`. */ function _numberMinted(address owner) internal view returns (uint256) { return (ERC721AStorage.layout()._packedAddressData[owner] >> _BITPOS_NUMBER_MINTED) & _BITMASK_ADDRESS_DATA_ENTRY; } /** * Returns the number of tokens burned by or on behalf of `owner`. */ function _numberBurned(address owner) internal view returns (uint256) { return (ERC721AStorage.layout()._packedAddressData[owner] >> _BITPOS_NUMBER_BURNED) & _BITMASK_ADDRESS_DATA_ENTRY; } /** * Returns the auxiliary data for `owner`. (e.g. number of whitelist mint slots used). */ function _getAux(address owner) internal view returns (uint64) { return uint64(ERC721AStorage.layout()._packedAddressData[owner] >> _BITPOS_AUX); } /** * Sets the auxiliary data for `owner`. (e.g. number of whitelist mint slots used). * If there are multiple variables, please pack them into a uint64. */ function _setAux(address owner, uint64 aux) internal virtual { uint256 packed = ERC721AStorage.layout()._packedAddressData[owner]; uint256 auxCasted; // Cast `aux` with assembly to avoid redundant masking. assembly { auxCasted := aux } packed = (packed & _BITMASK_AUX_COMPLEMENT) | (auxCasted << _BITPOS_AUX); ERC721AStorage.layout()._packedAddressData[owner] = packed; } // ============================================================= // IERC165 // ============================================================= /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * [EIP section](https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified) * to learn more about how these ids are created. * * This function call must use less than 30000 gas. */ function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { // The interface IDs are constants representing the first 4 bytes // of the XOR of all function selectors in the interface. // See: [ERC165](https://eips.ethereum.org/EIPS/eip-165) // (e.g. `bytes4(i.functionA.selector ^ i.functionB.selector ^ ...)`) return interfaceId == 0x01ffc9a7 || // ERC165 interface ID for ERC165. interfaceId == 0x80ac58cd || // ERC165 interface ID for ERC721. interfaceId == 0x5b5e139f; // ERC165 interface ID for ERC721Metadata. } // ============================================================= // IERC721Metadata // ============================================================= /** * @dev Returns the token collection name. */ function name() public view virtual override returns (string memory) { return ERC721AStorage.layout()._name; } /** * @dev Returns the token collection symbol. */ function symbol() public view virtual override returns (string memory) { return ERC721AStorage.layout()._symbol; } /** * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token. */ function tokenURI(uint256 tokenId) public view virtual override returns (string memory) { if (!_exists(tokenId)) revert URIQueryForNonexistentToken(); string memory baseURI = _baseURI(); return bytes(baseURI).length != 0 ? string(abi.encodePacked(baseURI, _toString(tokenId))) : ''; } /** * @dev Base URI for computing {tokenURI}. If set, the resulting URI for each * token will be the concatenation of the `baseURI` and the `tokenId`. Empty * by default, it can be overridden in child contracts. */ function _baseURI() internal view virtual returns (string memory) { return ''; } // ============================================================= // OWNERSHIPS OPERATIONS // ============================================================= /** * @dev Returns the owner of the `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function ownerOf(uint256 tokenId) public view virtual override returns (address) { return address(uint160(_packedOwnershipOf(tokenId))); } /** * @dev Gas spent here starts off proportional to the maximum mint batch size. * It gradually moves to O(1) as tokens get transferred around over time. */ function _ownershipOf(uint256 tokenId) internal view virtual returns (TokenOwnership memory) { return _unpackedOwnership(_packedOwnershipOf(tokenId)); } /** * @dev Returns the unpacked `TokenOwnership` struct at `index`. */ function _ownershipAt(uint256 index) internal view virtual returns (TokenOwnership memory) { return _unpackedOwnership(ERC721AStorage.layout()._packedOwnerships[index]); } /** * @dev Initializes the ownership slot minted at `index` for efficiency purposes. */ function _initializeOwnershipAt(uint256 index) internal virtual { if (ERC721AStorage.layout()._packedOwnerships[index] == 0) { ERC721AStorage.layout()._packedOwnerships[index] = _packedOwnershipOf(index); } } /** * Returns the packed ownership data of `tokenId`. */ function _packedOwnershipOf(uint256 tokenId) private view returns (uint256 packed) { if (_startTokenId() <= tokenId) { packed = ERC721AStorage.layout()._packedOwnerships[tokenId]; // If not burned. if (packed & _BITMASK_BURNED == 0) { // If the data at the starting slot does not exist, start the scan. if (packed == 0) { if (tokenId >= ERC721AStorage.layout()._currentIndex) revert OwnerQueryForNonexistentToken(); // Invariant: // There will always be an initialized ownership slot // (i.e. `ownership.addr != address(0) && ownership.burned == false`) // before an unintialized ownership slot // (i.e. `ownership.addr == address(0) && ownership.burned == false`) // Hence, `tokenId` will not underflow. // // We can directly compare the packed value. // If the address is zero, packed will be zero. for (;;) { unchecked { packed = ERC721AStorage.layout()._packedOwnerships[--tokenId]; } if (packed == 0) continue; return packed; } } // Otherwise, the data exists and is not burned. We can skip the scan. // This is possible because we have already achieved the target condition. // This saves 2143 gas on transfers of initialized tokens. return packed; } } revert OwnerQueryForNonexistentToken(); } /** * @dev Returns the unpacked `TokenOwnership` struct from `packed`. */ function _unpackedOwnership(uint256 packed) private pure returns (TokenOwnership memory ownership) { ownership.addr = address(uint160(packed)); ownership.startTimestamp = uint64(packed >> _BITPOS_START_TIMESTAMP); ownership.burned = packed & _BITMASK_BURNED != 0; ownership.extraData = uint24(packed >> _BITPOS_EXTRA_DATA); } /** * @dev Packs ownership data into a single uint256. */ function _packOwnershipData(address owner, uint256 flags) private view returns (uint256 result) { assembly { // Mask `owner` to the lower 160 bits, in case the upper bits somehow aren't clean. owner := and(owner, _BITMASK_ADDRESS) // `owner | (block.timestamp << _BITPOS_START_TIMESTAMP) | flags`. result := or(owner, or(shl(_BITPOS_START_TIMESTAMP, timestamp()), flags)) } } /** * @dev Returns the `nextInitialized` flag set if `quantity` equals 1. */ function _nextInitializedFlag(uint256 quantity) private pure returns (uint256 result) { // For branchless setting of the `nextInitialized` flag. assembly { // `(quantity == 1) << _BITPOS_NEXT_INITIALIZED`. result := shl(_BITPOS_NEXT_INITIALIZED, eq(quantity, 1)) } } // ============================================================= // APPROVAL OPERATIONS // ============================================================= /** * @dev Gives permission to `to` to transfer `tokenId` token to another account. See {ERC721A-_approve}. * * Requirements: * * - The caller must own the token or be an approved operator. */ function approve(address to, uint256 tokenId) public payable virtual override { _approve(to, tokenId, true); } /** * @dev Returns the account approved for `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function getApproved(uint256 tokenId) public view virtual override returns (address) { if (!_exists(tokenId)) revert ApprovalQueryForNonexistentToken(); return ERC721AStorage.layout()._tokenApprovals[tokenId].value; } /** * @dev Approve or remove `operator` as an operator for the caller. * Operators can call {transferFrom} or {safeTransferFrom} * for any token owned by the caller. * * Requirements: * * - The `operator` cannot be the caller. * * Emits an {ApprovalForAll} event. */ function setApprovalForAll(address operator, bool approved) public virtual override { ERC721AStorage.layout()._operatorApprovals[_msgSenderERC721A()][operator] = approved; emit ApprovalForAll(_msgSenderERC721A(), operator, approved); } /** * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`. * * See {setApprovalForAll}. */ function isApprovedForAll(address owner, address operator) public view virtual override returns (bool) { return ERC721AStorage.layout()._operatorApprovals[owner][operator]; } /** * @dev Returns whether `tokenId` exists. * * Tokens can be managed by their owner or approved accounts via {approve} or {setApprovalForAll}. * * Tokens start existing when they are minted. See {_mint}. */ function _exists(uint256 tokenId) internal view virtual returns (bool) { return _startTokenId() <= tokenId && tokenId < ERC721AStorage.layout()._currentIndex && // If within bounds, ERC721AStorage.layout()._packedOwnerships[tokenId] & _BITMASK_BURNED == 0; // and not burned. } /** * @dev Returns whether `msgSender` is equal to `approvedAddress` or `owner`. */ function _isSenderApprovedOrOwner( address approvedAddress, address owner, address msgSender ) private pure returns (bool result) { assembly { // Mask `owner` to the lower 160 bits, in case the upper bits somehow aren't clean. owner := and(owner, _BITMASK_ADDRESS) // Mask `msgSender` to the lower 160 bits, in case the upper bits somehow aren't clean. msgSender := and(msgSender, _BITMASK_ADDRESS) // `msgSender == owner || msgSender == approvedAddress`. result := or(eq(msgSender, owner), eq(msgSender, approvedAddress)) } } /** * @dev Returns the storage slot and value for the approved address of `tokenId`. */ function _getApprovedSlotAndAddress(uint256 tokenId) private view returns (uint256 approvedAddressSlot, address approvedAddress) { ERC721AStorage.TokenApprovalRef storage tokenApproval = ERC721AStorage.layout()._tokenApprovals[tokenId]; // The following is equivalent to `approvedAddress = _tokenApprovals[tokenId].value`. assembly { approvedAddressSlot := tokenApproval.slot approvedAddress := sload(approvedAddressSlot) } } // ============================================================= // TRANSFER OPERATIONS // ============================================================= /** * @dev Transfers `tokenId` from `from` to `to`. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must be owned by `from`. * - If the caller is not `from`, it must be approved to move this token * by either {approve} or {setApprovalForAll}. * * Emits a {Transfer} event. */ function transferFrom( address from, address to, uint256 tokenId ) public payable virtual override { uint256 prevOwnershipPacked = _packedOwnershipOf(tokenId); if (address(uint160(prevOwnershipPacked)) != from) revert TransferFromIncorrectOwner(); (uint256 approvedAddressSlot, address approvedAddress) = _getApprovedSlotAndAddress(tokenId); // The nested ifs save around 20+ gas over a compound boolean condition. if (!_isSenderApprovedOrOwner(approvedAddress, from, _msgSenderERC721A())) if (!isApprovedForAll(from, _msgSenderERC721A())) revert TransferCallerNotOwnerNorApproved(); if (to == address(0)) revert TransferToZeroAddress(); _beforeTokenTransfers(from, to, tokenId, 1); // Clear approvals from the previous owner. assembly { if approvedAddress { // This is equivalent to `delete _tokenApprovals[tokenId]`. sstore(approvedAddressSlot, 0) } } // Underflow of the sender's balance is impossible because we check for // ownership above and the recipient's balance can't realistically overflow. // Counter overflow is incredibly unrealistic as `tokenId` would have to be 2**256. unchecked { // We can directly increment and decrement the balances. --ERC721AStorage.layout()._packedAddressData[from]; // Updates: `balance -= 1`. ++ERC721AStorage.layout()._packedAddressData[to]; // Updates: `balance += 1`. // Updates: // - `address` to the next owner. // - `startTimestamp` to the timestamp of transfering. // - `burned` to `false`. // - `nextInitialized` to `true`. ERC721AStorage.layout()._packedOwnerships[tokenId] = _packOwnershipData( to, _BITMASK_NEXT_INITIALIZED | _nextExtraData(from, to, prevOwnershipPacked) ); // If the next slot may not have been initialized (i.e. `nextInitialized == false`) . if (prevOwnershipPacked & _BITMASK_NEXT_INITIALIZED == 0) { uint256 nextTokenId = tokenId + 1; // If the next slot's address is zero and not burned (i.e. packed value is zero). if (ERC721AStorage.layout()._packedOwnerships[nextTokenId] == 0) { // If the next slot is within bounds. if (nextTokenId != ERC721AStorage.layout()._currentIndex) { // Initialize the next slot to maintain correctness for `ownerOf(tokenId + 1)`. ERC721AStorage.layout()._packedOwnerships[nextTokenId] = prevOwnershipPacked; } } } } emit Transfer(from, to, tokenId); _afterTokenTransfers(from, to, tokenId, 1); } /** * @dev Equivalent to `safeTransferFrom(from, to, tokenId, '')`. */ function safeTransferFrom( address from, address to, uint256 tokenId ) public payable virtual override { safeTransferFrom(from, to, tokenId, ''); } /** * @dev Safely transfers `tokenId` token from `from` to `to`. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must be approved to move this token * by either {approve} or {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement * {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom( address from, address to, uint256 tokenId, bytes memory _data ) public payable virtual override { transferFrom(from, to, tokenId); if (to.code.length != 0) if (!_checkContractOnERC721Received(from, to, tokenId, _data)) { revert TransferToNonERC721ReceiverImplementer(); } } /** * @dev Hook that is called before a set of serially-ordered token IDs * are about to be transferred. This includes minting. * And also called before burning one token. * * `startTokenId` - the first token ID to be transferred. * `quantity` - the amount to be transferred. * * Calling conditions: * * - When `from` and `to` are both non-zero, `from`'s `tokenId` will be * transferred to `to`. * - When `from` is zero, `tokenId` will be minted for `to`. * - When `to` is zero, `tokenId` will be burned by `from`. * - `from` and `to` are never both zero. */ function _beforeTokenTransfers( address from, address to, uint256 startTokenId, uint256 quantity ) internal virtual {} /** * @dev Hook that is called after a set of serially-ordered token IDs * have been transferred. This includes minting. * And also called after one token has been burned. * * `startTokenId` - the first token ID to be transferred. * `quantity` - the amount to be transferred. * * Calling conditions: * * - When `from` and `to` are both non-zero, `from`'s `tokenId` has been * transferred to `to`. * - When `from` is zero, `tokenId` has been minted for `to`. * - When `to` is zero, `tokenId` has been burned by `from`. * - `from` and `to` are never both zero. */ function _afterTokenTransfers( address from, address to, uint256 startTokenId, uint256 quantity ) internal virtual {} /** * @dev Private function to invoke {IERC721Receiver-onERC721Received} on a target contract. * * `from` - Previous owner of the given token ID. * `to` - Target address that will receive the token. * `tokenId` - Token ID to be transferred. * `_data` - Optional data to send along with the call. * * Returns whether the call correctly returned the expected magic value. */ function _checkContractOnERC721Received( address from, address to, uint256 tokenId, bytes memory _data ) private returns (bool) { try ERC721A__IERC721ReceiverUpgradeable(to).onERC721Received(_msgSenderERC721A(), from, tokenId, _data) returns (bytes4 retval) { return retval == ERC721A__IERC721ReceiverUpgradeable(to).onERC721Received.selector; } catch (bytes memory reason) { if (reason.length == 0) { revert TransferToNonERC721ReceiverImplementer(); } else { assembly { revert(add(32, reason), mload(reason)) } } } } // ============================================================= // MINT OPERATIONS // ============================================================= /** * @dev Mints `quantity` tokens and transfers them to `to`. * * Requirements: * * - `to` cannot be the zero address. * - `quantity` must be greater than 0. * * Emits a {Transfer} event for each mint. */ function _mint(address to, uint256 quantity) internal virtual { uint256 startTokenId = ERC721AStorage.layout()._currentIndex; if (quantity == 0) revert MintZeroQuantity(); _beforeTokenTransfers(address(0), to, startTokenId, quantity); // Overflows are incredibly unrealistic. // `balance` and `numberMinted` have a maximum limit of 2**64. // `tokenId` has a maximum limit of 2**256. unchecked { // Updates: // - `balance += quantity`. // - `numberMinted += quantity`. // // We can directly add to the `balance` and `numberMinted`. ERC721AStorage.layout()._packedAddressData[to] += quantity * ((1 << _BITPOS_NUMBER_MINTED) | 1); // Updates: // - `address` to the owner. // - `startTimestamp` to the timestamp of minting. // - `burned` to `false`. // - `nextInitialized` to `quantity == 1`. ERC721AStorage.layout()._packedOwnerships[startTokenId] = _packOwnershipData( to, _nextInitializedFlag(quantity) | _nextExtraData(address(0), to, 0) ); uint256 toMasked; uint256 end = startTokenId + quantity; // Use assembly to loop and emit the `Transfer` event for gas savings. // The duplicated `log4` removes an extra check and reduces stack juggling. // The assembly, together with the surrounding Solidity code, have been // delicately arranged to nudge the compiler into producing optimized opcodes. assembly { // Mask `to` to the lower 160 bits, in case the upper bits somehow aren't clean. toMasked := and(to, _BITMASK_ADDRESS) // Emit the `Transfer` event. log4( 0, // Start of data (0, since no data). 0, // End of data (0, since no data). _TRANSFER_EVENT_SIGNATURE, // Signature. 0, // `address(0)`. toMasked, // `to`. startTokenId // `tokenId`. ) // The `iszero(eq(,))` check ensures that large values of `quantity` // that overflows uint256 will make the loop run out of gas. // The compiler will optimize the `iszero` away for performance. for { let tokenId := add(startTokenId, 1) } iszero(eq(tokenId, end)) { tokenId := add(tokenId, 1) } { // Emit the `Transfer` event. Similar to above. log4(0, 0, _TRANSFER_EVENT_SIGNATURE, 0, toMasked, tokenId) } } if (toMasked == 0) revert MintToZeroAddress(); ERC721AStorage.layout()._currentIndex = end; } _afterTokenTransfers(address(0), to, startTokenId, quantity); } /** * @dev Mints `quantity` tokens and transfers them to `to`. * * This function is intended for efficient minting only during contract creation. * * It emits only one {ConsecutiveTransfer} as defined in * [ERC2309](https://eips.ethereum.org/EIPS/eip-2309), * instead of a sequence of {Transfer} event(s). * * Calling this function outside of contract creation WILL make your contract * non-compliant with the ERC721 standard. * For full ERC721 compliance, substituting ERC721 {Transfer} event(s) with the ERC2309 * {ConsecutiveTransfer} event is only permissible during contract creation. * * Requirements: * * - `to` cannot be the zero address. * - `quantity` must be greater than 0. * * Emits a {ConsecutiveTransfer} event. */ function _mintERC2309(address to, uint256 quantity) internal virtual { uint256 startTokenId = ERC721AStorage.layout()._currentIndex; if (to == address(0)) revert MintToZeroAddress(); if (quantity == 0) revert MintZeroQuantity(); if (quantity > _MAX_MINT_ERC2309_QUANTITY_LIMIT) revert MintERC2309QuantityExceedsLimit(); _beforeTokenTransfers(address(0), to, startTokenId, quantity); // Overflows are unrealistic due to the above check for `quantity` to be below the limit. unchecked { // Updates: // - `balance += quantity`. // - `numberMinted += quantity`. // // We can directly add to the `balance` and `numberMinted`. ERC721AStorage.layout()._packedAddressData[to] += quantity * ((1 << _BITPOS_NUMBER_MINTED) | 1); // Updates: // - `address` to the owner. // - `startTimestamp` to the timestamp of minting. // - `burned` to `false`. // - `nextInitialized` to `quantity == 1`. ERC721AStorage.layout()._packedOwnerships[startTokenId] = _packOwnershipData( to, _nextInitializedFlag(quantity) | _nextExtraData(address(0), to, 0) ); emit ConsecutiveTransfer(startTokenId, startTokenId + quantity - 1, address(0), to); ERC721AStorage.layout()._currentIndex = startTokenId + quantity; } _afterTokenTransfers(address(0), to, startTokenId, quantity); } /** * @dev Safely mints `quantity` tokens and transfers them to `to`. * * Requirements: * * - If `to` refers to a smart contract, it must implement * {IERC721Receiver-onERC721Received}, which is called for each safe transfer. * - `quantity` must be greater than 0. * * See {_mint}. * * Emits a {Transfer} event for each mint. */ function _safeMint( address to, uint256 quantity, bytes memory _data ) internal virtual { _mint(to, quantity); unchecked { if (to.code.length != 0) { uint256 end = ERC721AStorage.layout()._currentIndex; uint256 index = end - quantity; do { if (!_checkContractOnERC721Received(address(0), to, index++, _data)) { revert TransferToNonERC721ReceiverImplementer(); } } while (index < end); // Reentrancy protection. if (ERC721AStorage.layout()._currentIndex != end) revert(); } } } /** * @dev Equivalent to `_safeMint(to, quantity, '')`. */ function _safeMint(address to, uint256 quantity) internal virtual { _safeMint(to, quantity, ''); } // ============================================================= // APPROVAL OPERATIONS // ============================================================= /** * @dev Equivalent to `_approve(to, tokenId, false)`. */ function _approve(address to, uint256 tokenId) internal virtual { _approve(to, tokenId, false); } /** * @dev Gives permission to `to` to transfer `tokenId` token to another account. * The approval is cleared when the token is transferred. * * Only a single account can be approved at a time, so approving the * zero address clears previous approvals. * * Requirements: * * - `tokenId` must exist. * * Emits an {Approval} event. */ function _approve( address to, uint256 tokenId, bool approvalCheck ) internal virtual { address owner = ownerOf(tokenId); if (approvalCheck) if (_msgSenderERC721A() != owner) if (!isApprovedForAll(owner, _msgSenderERC721A())) { revert ApprovalCallerNotOwnerNorApproved(); } ERC721AStorage.layout()._tokenApprovals[tokenId].value = to; emit Approval(owner, to, tokenId); } // ============================================================= // BURN OPERATIONS // ============================================================= /** * @dev Equivalent to `_burn(tokenId, false)`. */ function _burn(uint256 tokenId) internal virtual { _burn(tokenId, false); } /** * @dev Destroys `tokenId`. * The approval is cleared when the token is burned. * * Requirements: * * - `tokenId` must exist. * * Emits a {Transfer} event. */ function _burn(uint256 tokenId, bool approvalCheck) internal virtual { uint256 prevOwnershipPacked = _packedOwnershipOf(tokenId); address from = address(uint160(prevOwnershipPacked)); (uint256 approvedAddressSlot, address approvedAddress) = _getApprovedSlotAndAddress(tokenId); if (approvalCheck) { // The nested ifs save around 20+ gas over a compound boolean condition. if (!_isSenderApprovedOrOwner(approvedAddress, from, _msgSenderERC721A())) if (!isApprovedForAll(from, _msgSenderERC721A())) revert TransferCallerNotOwnerNorApproved(); } _beforeTokenTransfers(from, address(0), tokenId, 1); // Clear approvals from the previous owner. assembly { if approvedAddress { // This is equivalent to `delete _tokenApprovals[tokenId]`. sstore(approvedAddressSlot, 0) } } // Underflow of the sender's balance is impossible because we check for // ownership above and the recipient's balance can't realistically overflow. // Counter overflow is incredibly unrealistic as `tokenId` would have to be 2**256. unchecked { // Updates: // - `balance -= 1`. // - `numberBurned += 1`. // // We can directly decrement the balance, and increment the number burned. // This is equivalent to `packed -= 1; packed += 1 << _BITPOS_NUMBER_BURNED;`. ERC721AStorage.layout()._packedAddressData[from] += (1 << _BITPOS_NUMBER_BURNED) - 1; // Updates: // - `address` to the last owner. // - `startTimestamp` to the timestamp of burning. // - `burned` to `true`. // - `nextInitialized` to `true`. ERC721AStorage.layout()._packedOwnerships[tokenId] = _packOwnershipData( from, (_BITMASK_BURNED | _BITMASK_NEXT_INITIALIZED) | _nextExtraData(from, address(0), prevOwnershipPacked) ); // If the next slot may not have been initialized (i.e. `nextInitialized == false`) . if (prevOwnershipPacked & _BITMASK_NEXT_INITIALIZED == 0) { uint256 nextTokenId = tokenId + 1; // If the next slot's address is zero and not burned (i.e. packed value is zero). if (ERC721AStorage.layout()._packedOwnerships[nextTokenId] == 0) { // If the next slot is within bounds. if (nextTokenId != ERC721AStorage.layout()._currentIndex) { // Initialize the next slot to maintain correctness for `ownerOf(tokenId + 1)`. ERC721AStorage.layout()._packedOwnerships[nextTokenId] = prevOwnershipPacked; } } } } emit Transfer(from, address(0), tokenId); _afterTokenTransfers(from, address(0), tokenId, 1); // Overflow not possible, as _burnCounter cannot be exceed _currentIndex times. unchecked { ERC721AStorage.layout()._burnCounter++; } } // ============================================================= // EXTRA DATA OPERATIONS // ============================================================= /** * @dev Directly sets the extra data for the ownership data `index`. */ function _setExtraDataAt(uint256 index, uint24 extraData) internal virtual { uint256 packed = ERC721AStorage.layout()._packedOwnerships[index]; if (packed == 0) revert OwnershipNotInitializedForExtraData(); uint256 extraDataCasted; // Cast `extraData` with assembly to avoid redundant masking. assembly { extraDataCasted := extraData } packed = (packed & _BITMASK_EXTRA_DATA_COMPLEMENT) | (extraDataCasted << _BITPOS_EXTRA_DATA); ERC721AStorage.layout()._packedOwnerships[index] = packed; } /** * @dev Called during each token transfer to set the 24bit `extraData` field. * Intended to be overridden by the cosumer contract. * * `previousExtraData` - the value of `extraData` before transfer. * * Calling conditions: * * - When `from` and `to` are both non-zero, `from`'s `tokenId` will be * transferred to `to`. * - When `from` is zero, `tokenId` will be minted for `to`. * - When `to` is zero, `tokenId` will be burned by `from`. * - `from` and `to` are never both zero. */ function _extraData( address from, address to, uint24 previousExtraData ) internal view virtual returns (uint24) {} /** * @dev Returns the next extra data for the packed ownership data. * The returned result is shifted into position. */ function _nextExtraData( address from, address to, uint256 prevOwnershipPacked ) private view returns (uint256) { uint24 extraData = uint24(prevOwnershipPacked >> _BITPOS_EXTRA_DATA); return uint256(_extraData(from, to, extraData)) << _BITPOS_EXTRA_DATA; } // ============================================================= // OTHER OPERATIONS // ============================================================= /** * @dev Returns the message sender (defaults to `msg.sender`). * * If you are writing GSN compatible contracts, you need to override this function. */ function _msgSenderERC721A() internal view virtual returns (address) { return msg.sender; } /** * @dev Converts a uint256 to its ASCII string decimal representation. */ function _toString(uint256 value) internal pure virtual returns (string memory str) { assembly { // The maximum value of a uint256 contains 78 digits (1 byte per digit), but // we allocate 0xa0 bytes to keep the free memory pointer 32-byte word aligned. // We will need 1 word for the trailing zeros padding, 1 word for the length, // and 3 words for a maximum of 78 digits. Total: 5 * 0x20 = 0xa0. let m := add(mload(0x40), 0xa0) // Update the free memory pointer to allocate. mstore(0x40, m) // Assign the `str` to the end. str := sub(m, 0x20) // Zeroize the slot after the string. mstore(str, 0) // Cache the end of the memory to calculate the length later. let end := str // We write the string from rightmost digit to leftmost digit. // The following is essentially a do-while loop that also handles the zero case. // prettier-ignore for { let temp := value } 1 {} { str := sub(str, 1) // Write the character to the pointer. // The ASCII index of the '0' character is 48. mstore8(str, add(48, mod(temp, 10))) // Keep dividing `temp` until zero. temp := div(temp, 10) // prettier-ignore if iszero(temp) { break } } let length := sub(end, str) // Move the pointer 32 bytes leftwards to make room for the length. str := sub(str, 0x20) // Store the length. mstore(str, length) } }}

File 20 of 24 : ERC721AQueryableUpgradeable.sol

// SPDX-License-Identifier: MIT// ERC721A Contracts v4.2.3// Creator: Chiru Labspragma solidity ^0.8.4;import './IERC721AQueryableUpgradeable.sol';import '../ERC721AUpgradeable.sol';import '../ERC721A__Initializable.sol';/** * @title ERC721AQueryable. * * @dev ERC721A subclass with convenience query functions. */abstract contract ERC721AQueryableUpgradeable is ERC721A__Initializable, ERC721AUpgradeable, IERC721AQueryableUpgradeable{ function __ERC721AQueryable_init() internal onlyInitializingERC721A { __ERC721AQueryable_init_unchained(); } function __ERC721AQueryable_init_unchained() internal onlyInitializingERC721A {} /** * @dev Returns the `TokenOwnership` struct at `tokenId` without reverting. * * If the `tokenId` is out of bounds: * * - `addr = address(0)` * - `startTimestamp = 0` * - `burned = false` * - `extraData = 0` * * If the `tokenId` is burned: * * - `addr = <Address of owner before token was burned>` * - `startTimestamp = <Timestamp when token was burned>` * - `burned = true` * - `extraData = <Extra data when token was burned>` * * Otherwise: * * - `addr = <Address of owner>` * - `startTimestamp = <Timestamp of start of ownership>` * - `burned = false` * - `extraData = <Extra data at start of ownership>` */ function explicitOwnershipOf(uint256 tokenId) public view virtual override returns (TokenOwnership memory) { TokenOwnership memory ownership; if (tokenId < _startTokenId() || tokenId >= _nextTokenId()) { return ownership; } ownership = _ownershipAt(tokenId); if (ownership.burned) { return ownership; } return _ownershipOf(tokenId); } /** * @dev Returns an array of `TokenOwnership` structs at `tokenIds` in order. * See {ERC721AQueryable-explicitOwnershipOf} */ function explicitOwnershipsOf(uint256[] calldata tokenIds) external view virtual override returns (TokenOwnership[] memory) { unchecked { uint256 tokenIdsLength = tokenIds.length; TokenOwnership[] memory ownerships = new TokenOwnership[](tokenIdsLength); for (uint256 i; i != tokenIdsLength; ++i) { ownerships[i] = explicitOwnershipOf(tokenIds[i]); } return ownerships; } } /** * @dev Returns an array of token IDs owned by `owner`, * in the range [`start`, `stop`) * (i.e. `start <= tokenId < stop`). * * This function allows for tokens to be queried if the collection * grows too big for a single call of {ERC721AQueryable-tokensOfOwner}. * * Requirements: * * - `start < stop` */ function tokensOfOwnerIn( address owner, uint256 start, uint256 stop ) external view virtual override returns (uint256[] memory) { unchecked { if (start >= stop) revert InvalidQueryRange(); uint256 tokenIdsIdx; uint256 stopLimit = _nextTokenId(); // Set `start = max(start, _startTokenId())`. if (start < _startTokenId()) { start = _startTokenId(); } // Set `stop = min(stop, stopLimit)`. if (stop > stopLimit) { stop = stopLimit; } uint256 tokenIdsMaxLength = balanceOf(owner); // Set `tokenIdsMaxLength = min(balanceOf(owner), stop - start)`, // to cater for cases where `balanceOf(owner)` is too big. if (start < stop) { uint256 rangeLength = stop - start; if (rangeLength < tokenIdsMaxLength) { tokenIdsMaxLength = rangeLength; } } else { tokenIdsMaxLength = 0; } uint256[] memory tokenIds = new uint256[](tokenIdsMaxLength); if (tokenIdsMaxLength == 0) { return tokenIds; } // We need to call `explicitOwnershipOf(start)`, // because the slot at `start` may not be initialized. TokenOwnership memory ownership = explicitOwnershipOf(start); address currOwnershipAddr; // If the starting slot exists (i.e. not burned), initialize `currOwnershipAddr`. // `ownership.address` will not be zero, as `start` is clamped to the valid token ID range. if (!ownership.burned) { currOwnershipAddr = ownership.addr; } for (uint256 i = start; i != stop && tokenIdsIdx != tokenIdsMaxLength; ++i) { ownership = _ownershipAt(i); if (ownership.burned) { continue; } if (ownership.addr != address(0)) { currOwnershipAddr = ownership.addr; } if (currOwnershipAddr == owner) { tokenIds[tokenIdsIdx++] = i; } } // Downsize the array to fit. assembly { mstore(tokenIds, tokenIdsIdx) } return tokenIds; } } /** * @dev Returns an array of token IDs owned by `owner`. * * This function scans the ownership mapping and is O(`totalSupply`) in complexity. * It is meant to be called off-chain. * * See {ERC721AQueryable-tokensOfOwnerIn} for splitting the scan into * multiple smaller scans if the collection is large enough to cause * an out-of-gas error (10K collections should be fine). */ function tokensOfOwner(address owner) external view virtual override returns (uint256[] memory) { unchecked { uint256 tokenIdsIdx; address currOwnershipAddr; uint256 tokenIdsLength = balanceOf(owner); uint256[] memory tokenIds = new uint256[](tokenIdsLength); TokenOwnership memory ownership; for (uint256 i = _startTokenId(); tokenIdsIdx != tokenIdsLength; ++i) { ownership = _ownershipAt(i); if (ownership.burned) { continue; } if (ownership.addr != address(0)) { currOwnershipAddr = ownership.addr; } if (currOwnershipAddr == owner) { tokenIds[tokenIdsIdx++] = i; } } return tokenIds; } }}

File 21 of 24 : IERC721AQueryableUpgradeable.sol

// SPDX-License-Identifier: MIT// ERC721A Contracts v4.2.3// Creator: Chiru Labspragma solidity ^0.8.4;import '../IERC721AUpgradeable.sol';/** * @dev Interface of ERC721AQueryable. */interface IERC721AQueryableUpgradeable is IERC721AUpgradeable { /** * Invalid query range (`start` >= `stop`). */ error InvalidQueryRange(); /** * @dev Returns the `TokenOwnership` struct at `tokenId` without reverting. * * If the `tokenId` is out of bounds: * * - `addr = address(0)` * - `startTimestamp = 0` * - `burned = false` * - `extraData = 0` * * If the `tokenId` is burned: * * - `addr = <Address of owner before token was burned>` * - `startTimestamp = <Timestamp when token was burned>` * - `burned = true` * - `extraData = <Extra data when token was burned>` * * Otherwise: * * - `addr = <Address of owner>` * - `startTimestamp = <Timestamp of start of ownership>` * - `burned = false` * - `extraData = <Extra data at start of ownership>` */ function explicitOwnershipOf(uint256 tokenId) external view returns (TokenOwnership memory); /** * @dev Returns an array of `TokenOwnership` structs at `tokenIds` in order. * See {ERC721AQueryable-explicitOwnershipOf} */ function explicitOwnershipsOf(uint256[] memory tokenIds) external view returns (TokenOwnership[] memory); /** * @dev Returns an array of token IDs owned by `owner`, * in the range [`start`, `stop`) * (i.e. `start <= tokenId < stop`). * * This function allows for tokens to be queried if the collection * grows too big for a single call of {ERC721AQueryable-tokensOfOwner}. * * Requirements: * * - `start < stop` */ function tokensOfOwnerIn( address owner, uint256 start, uint256 stop ) external view returns (uint256[] memory); /** * @dev Returns an array of token IDs owned by `owner`. * * This function scans the ownership mapping and is O(`totalSupply`) in complexity. * It is meant to be called off-chain. * * See {ERC721AQueryable-tokensOfOwnerIn} for splitting the scan into * multiple smaller scans if the collection is large enough to cause * an out-of-gas error (10K collections should be fine). */ function tokensOfOwner(address owner) external view returns (uint256[] memory);}

File 22 of 24 : IERC721AUpgradeable.sol

// SPDX-License-Identifier: MIT// ERC721A Contracts v4.2.3// Creator: Chiru Labspragma solidity ^0.8.4;/** * @dev Interface of ERC721A. */interface IERC721AUpgradeable { /** * The caller must own the token or be an approved operator. */ error ApprovalCallerNotOwnerNorApproved(); /** * The token does not exist. */ error ApprovalQueryForNonexistentToken(); /** * Cannot query the balance for the zero address. */ error BalanceQueryForZeroAddress(); /** * Cannot mint to the zero address. */ error MintToZeroAddress(); /** * The quantity of tokens minted must be more than zero. */ error MintZeroQuantity(); /** * The token does not exist. */ error OwnerQueryForNonexistentToken(); /** * The caller must own the token or be an approved operator. */ error TransferCallerNotOwnerNorApproved(); /** * The token must be owned by `from`. */ error TransferFromIncorrectOwner(); /** * Cannot safely transfer to a contract that does not implement the * ERC721Receiver interface. */ error TransferToNonERC721ReceiverImplementer(); /** * Cannot transfer to the zero address. */ error TransferToZeroAddress(); /** * The token does not exist. */ error URIQueryForNonexistentToken(); /** * The `quantity` minted with ERC2309 exceeds the safety limit. */ error MintERC2309QuantityExceedsLimit(); /** * The `extraData` cannot be set on an unintialized ownership slot. */ error OwnershipNotInitializedForExtraData(); // ============================================================= // STRUCTS // ============================================================= struct TokenOwnership { // The address of the owner. address addr; // Stores the start time of ownership with minimal overhead for tokenomics. uint64 startTimestamp; // Whether the token has been burned. bool burned; // Arbitrary data similar to `startTimestamp` that can be set via {_extraData}. uint24 extraData; } // ============================================================= // TOKEN COUNTERS // ============================================================= /** * @dev Returns the total number of tokens in existence. * Burned tokens will reduce the count. * To get the total number of tokens minted, please see {_totalMinted}. */ function totalSupply() external view returns (uint256); // ============================================================= // IERC165 // ============================================================= /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * [EIP section](https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified) * to learn more about how these ids are created. * * This function call must use less than 30000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); // ============================================================= // IERC721 // ============================================================= /** * @dev Emitted when `tokenId` token is transferred from `from` to `to`. */ event Transfer(address indexed from, address indexed to, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token. */ event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables or disables * (`approved`) `operator` to manage all of its assets. */ event ApprovalForAll(address indexed owner, address indexed operator, bool approved); /** * @dev Returns the number of tokens in `owner`'s account. */ function balanceOf(address owner) external view returns (uint256 balance); /** * @dev Returns the owner of the `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function ownerOf(uint256 tokenId) external view returns (address owner); /** * @dev Safely transfers `tokenId` token from `from` to `to`, * checking first that contract recipients are aware of the ERC721 protocol * to prevent tokens from being forever locked. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must be have been allowed to move * this token by either {approve} or {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement * {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom( address from, address to, uint256 tokenId, bytes calldata data ) external payable; /** * @dev Equivalent to `safeTransferFrom(from, to, tokenId, '')`. */ function safeTransferFrom( address from, address to, uint256 tokenId ) external payable; /** * @dev Transfers `tokenId` from `from` to `to`. * * WARNING: Usage of this method is discouraged, use {safeTransferFrom} * whenever possible. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must be owned by `from`. * - If the caller is not `from`, it must be approved to move this token * by either {approve} or {setApprovalForAll}. * * Emits a {Transfer} event. */ function transferFrom( address from, address to, uint256 tokenId ) external payable; /** * @dev Gives permission to `to` to transfer `tokenId` token to another account. * The approval is cleared when the token is transferred. * * Only a single account can be approved at a time, so approving the * zero address clears previous approvals. * * Requirements: * * - The caller must own the token or be an approved operator. * - `tokenId` must exist. * * Emits an {Approval} event. */ function approve(address to, uint256 tokenId) external payable; /** * @dev Approve or remove `operator` as an operator for the caller. * Operators can call {transferFrom} or {safeTransferFrom} * for any token owned by the caller. * * Requirements: * * - The `operator` cannot be the caller. * * Emits an {ApprovalForAll} event. */ function setApprovalForAll(address operator, bool _approved) external; /** * @dev Returns the account approved for `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function getApproved(uint256 tokenId) external view returns (address operator); /** * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`. * * See {setApprovalForAll}. */ function isApprovedForAll(address owner, address operator) external view returns (bool); // ============================================================= // IERC721Metadata // ============================================================= /** * @dev Returns the token collection name. */ function name() external view returns (string memory); /** * @dev Returns the token collection symbol. */ function symbol() external view returns (string memory); /** * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token. */ function tokenURI(uint256 tokenId) external view returns (string memory); // ============================================================= // IERC2309 // ============================================================= /** * @dev Emitted when tokens in `fromTokenId` to `toTokenId` * (inclusive) is transferred from `from` to `to`, as defined in the * [ERC2309](https://eips.ethereum.org/EIPS/eip-2309) standard. * * See {_mintERC2309} for more details. */ event ConsecutiveTransfer(uint256 indexed fromTokenId, uint256 toTokenId, address indexed from, address indexed to);}

File 23 of 24 : IOperatorFilterRegistry.sol

(Video) Verifying Contracts in Polygonscan

// SPDX-License-Identifier: MITpragma solidity ^0.8.13;interface IOperatorFilterRegistry { function isOperatorAllowed(address registrant, address operator) external view returns (bool); function register(address registrant) external; function registerAndSubscribe(address registrant, address subscription) external; function registerAndCopyEntries(address registrant, address registrantToCopy) external; function unregister(address addr) external; function updateOperator(address registrant, address operator, bool filtered) external; function updateOperators(address registrant, address[] calldata operators, bool filtered) external; function updateCodeHash(address registrant, bytes32 codehash, bool filtered) external; function updateCodeHashes(address registrant, bytes32[] calldata codeHashes, bool filtered) external; function subscribe(address registrant, address registrantToSubscribe) external; function unsubscribe(address registrant, bool copyExistingEntries) external; function subscriptionOf(address addr) external returns (address registrant); function subscribers(address registrant) external returns (address[] memory); function subscriberAt(address registrant, uint256 index) external returns (address); function copyEntriesOf(address registrant, address registrantToCopy) external; function isOperatorFiltered(address registrant, address operator) external returns (bool); function isCodeHashOfFiltered(address registrant, address operatorWithCode) external returns (bool); function isCodeHashFiltered(address registrant, bytes32 codeHash) external returns (bool); function filteredOperators(address addr) external returns (address[] memory); function filteredCodeHashes(address addr) external returns (bytes32[] memory); function filteredOperatorAt(address registrant, uint256 index) external returns (address); function filteredCodeHashAt(address registrant, uint256 index) external returns (bytes32); function isRegistered(address addr) external returns (bool); function codeHashOf(address addr) external returns (bytes32);}

File 24 of 24 : OperatorFiltererUpgradeable.sol

// SPDX-License-Identifier: MITpragma solidity ^0.8.13;import {IOperatorFilterRegistry} from "../IOperatorFilterRegistry.sol";import {Initializable} from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";abstract contract OperatorFiltererUpgradeable is Initializable { error OperatorNotAllowed(address operator); IOperatorFilterRegistry constant operatorFilterRegistry = IOperatorFilterRegistry(0x000000000000AAeB6D7670E522A718067333cd4E); function __OperatorFilterer_init(address subscriptionOrRegistrantToCopy, bool subscribe) internal onlyInitializing { // If an inheriting token contract is deployed to a network without the registry deployed, the modifier // will not revert, but the contract will need to be registered with the registry once it is deployed in // order for the modifier to filter addresses. if (address(operatorFilterRegistry).code.length > 0) { if (!operatorFilterRegistry.isRegistered(address(this))) { if (subscribe) { operatorFilterRegistry.registerAndSubscribe(address(this), subscriptionOrRegistrantToCopy); } else { if (subscriptionOrRegistrantToCopy != address(0)) { operatorFilterRegistry.registerAndCopyEntries(address(this), subscriptionOrRegistrantToCopy); } else { operatorFilterRegistry.register(address(this)); } } } } } modifier onlyAllowedOperator(address from) virtual { // Check registry code length to facilitate testing in environments without a deployed registry. if (address(operatorFilterRegistry).code.length > 0) { // Allow spending tokens from addresses with balance // Note that this still allows listings and marketplaces with escrow to transfer tokens if transferred // from an EOA. if (from == msg.sender) { _; return; } if (!operatorFilterRegistry.isOperatorAllowed(address(this), msg.sender)) { revert OperatorNotAllowed(msg.sender); } } _; } modifier onlyAllowedOperatorApproval(address operator) virtual { // Check registry code length to facilitate testing in environments without a deployed registry. if (address(operatorFilterRegistry).code.length > 0) { if (!operatorFilterRegistry.isOperatorAllowed(address(this), operator)) { revert OperatorNotAllowed(operator); } } _; }}

Settings

{ "optimizer": { "enabled": true, "runs": 200 }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "metadata": { "useLiteralContent": true }, "libraries": {}}

Contract ABI

JSON Format RAW/Text Format

(Video) polygonscan.com API Key - Register and create a key
[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"ApprovalCallerNotOwnerNorApproved","type":"error"},{"inputs":[],"name":"ApprovalQueryForNonexistentToken","type":"error"},{"inputs":[],"name":"BalanceQueryForZeroAddress","type":"error"},{"inputs":[],"name":"BurningNotAllowed","type":"error"},{"inputs":[],"name":"ExceedMaxPerWallet","type":"error"},{"inputs":[],"name":"InvalidAirdrop","type":"error"},{"inputs":[],"name":"InvalidMintFunction","type":"error"},{"inputs":[],"name":"InvalidPhase","type":"error"},{"inputs":[],"name":"InvalidPrice","type":"error"},{"inputs":[],"name":"InvalidProof","type":"error"},{"inputs":[],"name":"InvalidQueryRange","type":"error"},{"inputs":[],"name":"MintERC2309QuantityExceedsLimit","type":"error"},{"inputs":[],"name":"MintToZeroAddress","type":"error"},{"inputs":[],"name":"MintZeroQuantity","type":"error"},{"inputs":[{"internalType":"address","name":"operator","type":"address"}],"name":"OperatorNotAllowed","type":"error"},{"inputs":[],"name":"OwnerQueryForNonexistentToken","type":"error"},{"inputs":[],"name":"OwnershipNotInitializedForExtraData","type":"error"},{"inputs":[],"name":"PhaseNotActive","type":"error"},{"inputs":[],"name":"SoldOut","type":"error"},{"inputs":[],"name":"TransferCallerNotOwnerNorApproved","type":"error"},{"inputs":[],"name":"TransferFromIncorrectOwner","type":"error"},{"inputs":[],"name":"TransferToNonERC721ReceiverImplementer","type":"error"},{"inputs":[],"name":"TransferToZeroAddress","type":"error"},{"inputs":[],"name":"URIQueryForNonexistentToken","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"approved","type":"address"},{"indexed":true,"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"operator","type":"address"},{"indexed":false,"internalType":"bool","name":"approved","type":"bool"}],"name":"ApprovalForAll","type":"event"},{"anonymous":false,"inputs":[{"components":[{"internalType":"uint64","name":"maxSupply","type":"uint64"},{"internalType":"uint64","name":"maxPerWallet","type":"uint64"},{"internalType":"uint64","name":"amountMinted","type":"uint64"},{"internalType":"uint256","name":"price","type":"uint256"}],"indexed":false,"internalType":"struct BaseSettings","name":"settings","type":"tuple"}],"name":"BaseSettingsUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"string","name":"baseURI","type":"string"}],"name":"BaseURIUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"bool","name":"burnActive","type":"bool"}],"name":"BurnStatusChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"fromTokenId","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"toTokenId","type":"uint256"},{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"}],"name":"ConsecutiveTransfer","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"contract IERC20Upgradeable","name":"token","type":"address"},{"indexed":false,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"ERC20PaymentReleased","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint8","name":"version","type":"uint8"}],"name":"Initialized","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"},{"indexed":false,"internalType":"uint256","name":"shares","type":"uint256"}],"name":"PayeeAdded","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"from","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"PaymentReceived","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"PaymentReleased","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"phaseIds","type":"uint256"}],"name":"PhaseEnded","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"phaseId","type":"uint256"},{"components":[{"internalType":"uint64","name":"maxSupply","type":"uint64"},{"internalType":"uint64","name":"amountMinted","type":"uint64"},{"internalType":"uint64","name":"maxPerWallet","type":"uint64"},{"internalType":"bytes32","name":"merkleRoot","type":"bytes32"},{"internalType":"bool","name":"isActive","type":"bool"},{"internalType":"uint256","name":"price","type":"uint256"}],"indexed":false,"internalType":"struct PhaseSettings","name":"settings","type":"tuple"}],"name":"PhaseSettingsUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256[]","name":"phaseIds","type":"uint256[]"},{"indexed":false,"internalType":"bool","name":"activatedPublic","type":"bool"}],"name":"PhasesActivated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256[]","name":"phaseIds","type":"uint256[]"},{"indexed":false,"internalType":"bool","name":"pausedPublic","type":"bool"}],"name":"PhasesPaused","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"royaltyAddress","type":"address"},{"indexed":false,"internalType":"uint96","name":"royaltyAmount","type":"uint96"}],"name":"RoyaltyUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":false,"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"TokenBurned","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"numRecipients","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"numTokens","type":"uint256"}],"name":"TokensAirdropped","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"quantity","type":"uint256"}],"name":"TokensMinted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":true,"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":[],"name":"_baseTokenURI","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256[]","name":"phaseIndices","type":"uint256[]"},{"internalType":"bool","name":"activatePublic","type":"bool"}],"name":"activatePhases","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"phaseIndex","type":"uint256"},{"internalType":"uint64[]","name":"quantities","type":"uint64[]"},{"internalType":"address[]","name":"recipients","type":"address[]"}],"name":"airdropForPhase","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint64[]","name":"quantities","type":"uint64[]"},{"internalType":"address[]","name":"recipients","type":"address[]"}],"name":"airdropPublic","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"operator","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"approve","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"baseSettings","outputs":[{"internalType":"uint64","name":"maxSupply","type":"uint64"},{"internalType":"uint64","name":"maxPerWallet","type":"uint64"},{"internalType":"uint64","name":"amountMinted","type":"uint64"},{"internalType":"uint256","name":"price","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"burn","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"phaseIndex","type":"uint256"}],"name":"endPhase","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint64[]","name":"phaseIndices","type":"uint64[]"}],"name":"endPhases","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"explicitOwnershipOf","outputs":[{"components":[{"internalType":"address","name":"addr","type":"address"},{"internalType":"uint64","name":"startTimestamp","type":"uint64"},{"internalType":"bool","name":"burned","type":"bool"},{"internalType":"uint24","name":"extraData","type":"uint24"}],"internalType":"struct IERC721AUpgradeable.TokenOwnership","name":"","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256[]","name":"tokenIds","type":"uint256[]"}],"name":"explicitOwnershipsOf","outputs":[{"components":[{"internalType":"address","name":"addr","type":"address"},{"internalType":"uint64","name":"startTimestamp","type":"uint64"},{"internalType":"bool","name":"burned","type":"bool"},{"internalType":"uint24","name":"extraData","type":"uint24"}],"internalType":"struct IERC721AUpgradeable.TokenOwnership[]","name":"","type":"tuple[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"wallet","type":"address"}],"name":"getAmountMintedForOwner","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"phaseIndex","type":"uint256"},{"internalType":"address","name":"wallet","type":"address"}],"name":"getAmountMintedForPhase","outputs":[{"internalType":"uint64","name":"","type":"uint64"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"getApproved","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"phaseIndex","type":"uint256"}],"name":"getDataForPhase","outputs":[{"components":[{"internalType":"uint64","name":"maxSupply","type":"uint64"},{"internalType":"uint64","name":"amountMinted","type":"uint64"},{"internalType":"uint64","name":"maxPerWallet","type":"uint64"},{"internalType":"bytes32","name":"merkleRoot","type":"bytes32"},{"internalType":"bool","name":"isActive","type":"bool"},{"internalType":"uint256","name":"price","type":"uint256"}],"internalType":"struct PhaseSettings","name":"","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"wallet","type":"address"}],"name":"getMintBalance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"string","name":"_name","type":"string"},{"internalType":"string","name":"_symbol","type":"string"},{"internalType":"string","name":"_baseUri","type":"string"},{"components":[{"internalType":"address","name":"royaltyAddress","type":"address"},{"internalType":"uint96","name":"royaltyAmount","type":"uint96"}],"internalType":"struct RoyaltySettings","name":"_royaltySettings","type":"tuple"},{"components":[{"internalType":"uint64","name":"maxSupply","type":"uint64"},{"internalType":"uint64","name":"amountMinted","type":"uint64"},{"internalType":"uint64","name":"maxPerWallet","type":"uint64"},{"internalType":"bytes32","name":"merkleRoot","type":"bytes32"},{"internalType":"bool","name":"isActive","type":"bool"},{"internalType":"uint256","name":"price","type":"uint256"}],"internalType":"struct PhaseSettings[]","name":"_phases","type":"tuple[]"},{"components":[{"internalType":"uint64","name":"maxSupply","type":"uint64"},{"internalType":"uint64","name":"maxPerWallet","type":"uint64"},{"internalType":"uint64","name":"amountMinted","type":"uint64"},{"internalType":"uint256","name":"price","type":"uint256"}],"internalType":"struct BaseSettings","name":"_baseSettings","type":"tuple"},{"components":[{"internalType":"address[]","name":"payees","type":"address[]"},{"internalType":"uint256[]","name":"shares","type":"uint256[]"}],"internalType":"struct PaymentSplitterSettings","name":"_paymentSplitterSettings","type":"tuple"},{"internalType":"uint256","name":"_maxIntendedSupply","type":"uint256"},{"internalType":"bool","name":"_allowBurning","type":"bool"},{"internalType":"address","name":"_deployer","type":"address"},{"internalType":"address","name":"_operatorFilter","type":"address"}],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"operator","type":"address"}],"name":"isApprovedForAll","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"isPublicActive","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"maxSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint64[]","name":"quantities","type":"uint64[]"},{"internalType":"bytes32[][]","name":"proofs","type":"bytes32[][]"},{"internalType":"uint256[]","name":"phaseIndices","type":"uint256[]"},{"internalType":"uint64","name":"publicQuantity","type":"uint64"}],"name":"mintBatch","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"uint256","name":"phaseIndex","type":"uint256"},{"internalType":"uint64","name":"quantity","type":"uint64"}],"name":"mintPhase","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"uint256","name":"phaseIndex","type":"uint256"},{"internalType":"uint64","name":"quantity","type":"uint64"},{"internalType":"bytes32[]","name":"proof","type":"bytes32[]"}],"name":"mintPhaseAllowlist","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"uint64","name":"quantity","type":"uint64"}],"name":"mintPublic","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"ownerOf","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256[]","name":"phaseIndices","type":"uint256[]"},{"internalType":"bool","name":"pausePublic","type":"bool"}],"name":"pausePhases","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"index","type":"uint256"}],"name":"payee","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"releasable","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract IERC20Upgradeable","name":"token","type":"address"},{"internalType":"address","name":"account","type":"address"}],"name":"releasable","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address payable","name":"account","type":"address"}],"name":"release","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract IERC20Upgradeable","name":"token","type":"address"},{"internalType":"address","name":"account","type":"address"}],"name":"release","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract IERC20Upgradeable","name":"token","type":"address"},{"internalType":"address","name":"account","type":"address"}],"name":"released","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"released","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_tokenId","type":"uint256"},{"internalType":"uint256","name":"_salePrice","type":"uint256"}],"name":"royaltyInfo","outputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"safeTransferFrom","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"safeTransferFrom","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"saleState","outputs":[{"internalType":"uint64","name":"numPhases","type":"uint64"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"operator","type":"address"},{"internalType":"bool","name":"approved","type":"bool"}],"name":"setApprovalForAll","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"string","name":"baseURI","type":"string"}],"name":"setBaseURI","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"},{"internalType":"uint96","name":"feeBasisPoints","type":"uint96"}],"name":"setRoyaltyInfo","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"shares","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"toggleBurning","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"tokenURI","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"tokensOfOwner","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"uint256","name":"start","type":"uint256"},{"internalType":"uint256","name":"stop","type":"uint256"}],"name":"tokensOfOwnerIn","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract IERC20Upgradeable","name":"token","type":"address"}],"name":"totalReleased","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalReleased","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalShares","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"transferFrom","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"uint64","name":"maxSupply","type":"uint64"},{"internalType":"uint64","name":"maxPerWallet","type":"uint64"},{"internalType":"uint64","name":"amountMinted","type":"uint64"},{"internalType":"uint256","name":"price","type":"uint256"}],"internalType":"struct BaseSettings","name":"_baseSettings","type":"tuple"}],"name":"updateBaseSettings","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"phaseIndex","type":"uint256"},{"components":[{"internalType":"uint64","name":"maxSupply","type":"uint64"},{"internalType":"uint64","name":"amountMinted","type":"uint64"},{"internalType":"uint64","name":"maxPerWallet","type":"uint64"},{"internalType":"bytes32","name":"merkleRoot","type":"bytes32"},{"internalType":"bool","name":"isActive","type":"bool"},{"internalType":"uint256","name":"price","type":"uint256"}],"internalType":"struct PhaseSettings","name":"phase","type":"tuple"}],"name":"updatePhaseSettings","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"withdraw","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"withdrawAddresses","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"stateMutability":"payable","type":"receive"}]

FAQs

What is the address of the Polygon in Opensea? ›

You can find the address for it here: https://polygonscan.com/token/0x7ceb23fd6bc0add59e62ac25578270cff1b9f619.

What is the contract address of the Polygon Matic? ›

Additionally, the MATIC contract's Ethereum address is 0x7D1AfA7B718fb893dB30A3aBc0Cfc608AaCfeBB0.

What is the contract address for ETH Polygon? ›

Both Polygon and Ethereum ETH $1833.57 use the same wallet address format,and with the same private key,you can sign transactions for both chains. The contract address for ETH on Matic is 0x7ceb23fd6bc0add59e62ac25578270cff1b9f619.

How much is the Polygon wallet worth? ›

The live Polygon price today is $0.843043 USD with a 24-hour trading volume of $349,255,413 USD.

What is a Polygon wallet address? ›

​ Here is the Polygon Wallet Suite URL: https://wallet.polygon.technology/ The Polygon Wallet Suite is a collection of Web3 applications provided by Polygon.

What is Polygon scan? ›

​PolygonScan is the leading blockchain explorer, search, API and analytics platform for the Polygon POS Chain ​ .

What is polygon wallet? ›

The polygon wallet is a web3-compatible cryptocurrency wallet. It enables you to store your crypto assets, tokens, and cryptocurrencies securely. It is used to send and receive cryptocurrency. It allows you to manage your holdings and adjust your crypto-asset portfolio per your objectives.

How do I verify a polygon contract? ›

Let's dive into the code!
  1. Step 1: Create an account in polygonscan.com. ...
  2. Step 2: Copy your API Key from Polygonscan. ...
  3. Step 3: Create a .env file. ...
  4. Step 4: Install hardhat-etherscan dependency. ...
  5. Step 5: Update your hardhat. ...
  6. Step 6: Verify the deployed contract address. ...
  7. 3 AI Crypto Tokens That Could Do the 100x in 2023.

What is Polygon Matic ERC20 token address? ›

Polygon (Matic): Matic Token | Address 0x7d1afa7b718fb893db30a3abc0cfc608aacfebb0 | Etherscan.

Is my Polygon address the same as my ETH address? ›

You will have the same address. You just need to make sure you have Polygon added as a network in MetaMask, and switch between Ethereum and Polygon as appropriate. The most important thing to remember when using Polygon is the form taken by its native token, MATIC.

What is Polygon chain? ›

Definition. Polygon is a “layer two” or “sidechain” scaling solution that runs alongside the Ethereum blockchain — allowing for speedy transactions and low fees. MATIC is the network's native cryptocurrency, which is used for fees, staking, and more.

How do I find a crypto contract address? ›

The contract address can be found on the home page of the NFT collection or next to a particular NFTs token ID and other metadata. When buying an NFT, always make sure it features the same contract address as other NFTs in the collection.

How much is $1000 in Polygon? ›

US Dollar to Polygon
$ US DollarPolygon
100.00107.71
250.00269.27
500.00538.55
1,000.001,077.10
4 more rows

Which crypto will explode in 2023? ›

Pikamoon (PIKA) – A play-to-earn Pokemon-inspired blockchain project. The 10,000+ whitelist signups and over 15,000 social media followers indicate it will be one of the next cryptocurrencies to explode in 2023.

Can you cash out Polygon? ›

To withdraw funds, click on the Withdraw link from any of the Plasma token types on Your tokens on the Polygon Mainnet section. You will be redirected to the Bridge page where you need to enter the Withdraw Amount. Once you have added the amount that you want to withdraw, you can then click on the Transfer button.

Which wallet uses Polygon network? ›

The Ledger Nano X is a well-known crypto hardware wallet used to store Polygon (MATIC) and other popular cryptos. It is an advanced hardware wallet that allows users to store the private keys of over 5,500 crypto assets offline.

Is trust wallet a Polygon wallet? ›

Polygon (MATIC) Wallet

With Trust Wallet, you are in control over your funds. Receive, send, store and exchange your cryptocurrency within the mobile interface.

What is a Matic wallet? ›

Matic Wallet is a decentralized application that stores your crypto assets. Matic network aims to solve the scalability and transaction cost issues faced by Bitcoin and Ethereum networks. Matic wallet offers a fast, secure, and user-friendly platform for managing your digital assets.

What is Polygon blockchain used for? ›

Polygon is a Layer 2 blockchain that aims to help Ethereum with its scalability. By acting as a Layer 2 protocol, Polygon doesn't aim to duplicate Ethereum's functionality. Instead, it helps improve transaction speeds and lower costs for developers.

What is polygon geofencing? ›

Geofences can have a shaped form (hereinafter - polygon geofences), they look like a polyline (for example, a street), a polygon (for example, a city or a factory territory) or they can have a simple form and look like a circle. Functionality of work with polygonal geofences is available on: Galileosky 7x.

What is polygon triangulation used for? ›

In computational geometry, polygon triangulation is the partition of a polygonal area (simple polygon) P into a set of triangles, i.e., finding a set of triangles with pairwise non-intersecting interiors whose union is P.

Is Polygon a security token? ›

The Block: SEC lists solana, polygon, cardano and several other tokens as securities.

What is a Polygon payment? ›

What is Polygon payment? Polygon payment allows merchants to accept the MATIC cryptocurrency in exchange for providing customers with goods or services. Polygon is a scaling solution with several tools that increase speed and reduce fees and complexity of transactions.

What is Polygon Network MetaMask? ›

MetaMask is a crypto wallet app and browser extension that by default is connected to the Ethereum mainnet. You can find the extension on the official MetaMask website, which will direct you to the correct place to download it.

What is verifying a smart contract? ›

What does Smart Contract verification mean? Smart Contract verification is the process of matching a Smart Contract's source code to its on-chain bytecode. This involves the recompilation of a Smart Contract to verify that its source code has actually generated the bytecode deployed on-chain.

How do I verify my smart contract on blockchain? ›

The simplest way to verify your source code is via the Etherscan UI. This process does not require any programming skills. Navigate to the Contract tab of the smart contract you are viewing on Etherscan and click the Verify and Publish link. Then, you'll need to select the file type, compiler version, and license.

What is a Polygon smart contract? ›

Polygon is a “layer two” or a “side chain” of an Ethereum blockchain. The big advantage of this scaling solution is that smart contracts deployed to polygon cost less fees than in Ethereum. Cryptocurrency used to pay fees in a Polygon is called “MATIC”. Mainnet & Testnet.

What network is Polygon ERC-20? ›

The short Matic (Eth) is an ERC20 token on the Ethereum blockchain. Matic (Polygon/Matic) is the native token on the Polygon blockchain (the secondary scaling solution mentioned above). NFTs can be minted on either of the two networks.

Is Matic on ERC-20 or Polygon? ›

MATIC is an ERC-20 token, meaning that it's compatible with other Ethereum-based digital currencies.

Is Matic an ERC-20 coin? ›

MATIC is an ERC-20 token, making it compatible with other Ethereum projects. Polygon users leverage MATIC to secure and govern the network, as well as pay transaction fees.

Why do Ethereum addresses start with 0x? ›

Instead, the hexadecimal system uses the numerals 0-9 and the letters A-F. This means it has 16 characters at its disposal, hence the name base 16. In computer science and many programming languages, the 0x prefix is used at the start of all hex numbers, as they are known, to differentiate them from decimal values.

Do all ETH addresses start with 0x? ›

Ethereum - All Ethereum addresses have a length of 40 hexadecimal characters and begin with "0x". Ethereum smart contract addresses also follow this format, making them visually indistinguishable from wallet addresses.

What is the difference between Polygon network and Ethereum? ›

While Ethereum is more widely used and has a larger ecosystem, Polygon is designed to be a Layer 2 scaling solution for Ethereum, offering faster and more efficient transactions at a lower cost. The Ethereum token (ETH) was created in 2014 by Vitalik Buterin, the co-founder of Ethereum.

What network does Matic use? ›

MATIC is the native cryptocurrency of the Polygon network and is used to help drive development across the network and can be used for staking and paying for transaction fees. Users can earn MATIC tokens by providing computational resources and services to the Polygon network.

Can Polygon reach $50? ›

“Based on this information, some experts suggest that Polygon's price could reach anywhere between $10 to $50 or even more by 2030. However, it's important to note that these are speculative predictions and should be taken with caution.”

What tokens are on Polygon chain? ›

MATIC token is the native token of Polygon. This is similar to Ether in Ethereum. To interact with Polygon network, MATIC tokens are required to pay as gas fees. On the Polygon chain, the Matic tokens works as native token.

What network is BTC on trust wallet? ›

As mentioned previously Trust Wallet is backed by Binance and therefore the wallet is integrated with both the Binance centralised exchange and the Binance Smart Chain. These API connections allow Trust Wallet users to swap assets in-app for Bitcoin.

What is the BTC BEP20 contract address? ›

0x2260FAC5E5542a773Aa44fBCfeDf7C193bc2C599 is the BTC BEP20 contract address.

What is the blockchain address? ›

A blockchain address is a unique sequence of numbers and letters and functions very much like an email address. It refers to a specific destination on the network where cryptocurrency can be sent to, and it can be used only once. The idea is to give a person a unique address every time he or she is to receive crypto.

How much is $100 Polygon? ›

USD to MATIC
AmountToday at 7:47 am
5 USD6.49 MATIC
10 USD12.97 MATIC
50 USD64.86 MATIC
100 USD129.73 MATIC
4 more rows

How do you convert a Polygon to cash? ›

You should see your Polygon (PoS) wallet dashboard and all current tokens bridged to Polygon (PoS). Locate the Ether (Ether - PoS) token and click Withdraw. In the pop-up window, enter your desired withdrawal amount and click Transfer. You'll have to click Continue on three pop-up windows.

Can Ethereum reach $100,000? ›

Conclusion: Yes, Ethereum Can Reach $100K

Many experts are eyeing these increasing use cases of Ethereum daily. A growing number of them have all agreed that it's merely a case of time before Ethereum potentially surges to $100,000 or more.

Which crypto has 1000x potential? ›

High Growth Crypto Coins and ApeMax: 10 Crypto Coins with 1000x Potential with ApeMax, Big Eyes, Ethereum, Shiba Inu, Chainlink and more.

What crypto under $1 will explode? ›

In this article, we will discuss the top 7 cryptocurrencies priced under $1 that are expected to explode in 2023. These include RENQ, XRP, CHZ, D2T, VET, TAMA, and LRC. Let's take a closer look at each of these coins and why they are considered excellent investment opportunities for the future.

How to find 1000x crypto? ›

Your best bet for finding the next 1000x crypto is on-chain analysis. By studying on-chain data, you get real-time information about market changes and can act accordingly.

What is plasma bridge? ›

Plasma bridge provides increased security guarantees due to the Plasma exit mechanism. However, there are certain restrictions on the child token and there is a 7-day withdrawal period associated with all exits/withdraws from Polygon to Ethereum on the Plasma bridge.

How do I withdraw money from coin market? ›

To withdraw funds (assets) on Coinbase Exchange:
  1. Sign in to Coinbase Exchange.
  2. Click the Trading tab.
  3. Under Wallet Balance, select Withdraw.
  4. Search for and select asset you'd like to withdraw.
  5. Choose your withdrawal method you'd like to use.
  6. In the To field, enter the external wallet address.

Does Coinbase use Matic network? ›

About Polygon

Polygon is a Layer 2 network that uses sidechains to expand Ethereum's transaction throughput. This allows payers to make payments for a fraction of the cost of sending on Ethereum Mainnet. Coinbase Commerce supports USDC, WETH (wrapped ETH), and MATIC payments on Polygon.

Where is the contract address in OpenSea? ›

Look up your NFT listing on OpenSea to get the on-chain information. If the full information is not being displayed and you see an ellipsis, you can find the contract address and token ID by looking at the URL.

What is MetaMask Polygon address? ›

Connecting MetaMask to Polygon

Network name: Polygon Mainnet. RPC URL: https://polygon-rpc.com. Chain ID: 137.

How do I find my OpenSea address? ›

First, you'll need your wallet address. You can find this in your crypto wallet or underneath your account name on OpenSea.

Where can I find my OpenSea address? ›

On OpenSea, for example, on the NFT's page under Details, there is a blue hyperlinked value labelled "Contract Address".

How do I read NFT metadata? ›

How to view NFT metadata on OpenSea?
  1. Open the NFT they want to get metadata for.
  2. Scroll down and click on the “Details” tab and click the link next to the contract address.
  3. In the Etherscan link that appears on the screen, then copy the contract address.
Sep 21, 2022

What is the token ID and contract address? ›

Contract Address refers to the address where the contract is deployed on the blockchain (e.g., Ethereum), while Token ID refers to this specific NFT. We will use the ERC-721 token as an example. Please choose a compatible network (ETH/BSC) for your NFT, or your asset might be lost and cannot be recovered.

How do I open NFT metadata? ›

If you have all of the above tools in place, you are ready to use the “getNFTMetadata” endpoint to get the metadata of an NFT.
  1. Step 1: Set Up Moralis. You need your Moralis Web3 API key to use the ultimate NFT API. ...
  2. Step 2: Using an Example Script. ...
  3. Step 3: Executing the Program to Get NFT Metadata.
Nov 15, 2022

What is Polygon smart chain? ›

Polygon, formerly known as Matic, is a Layer-2 scaling solution for the Ethereum Blockchain. It addresses some of the Ethereum fallbacks by utilizing sidechains, achieving similar decentralization and security of the Ethereum Network.

What network is Matic on MetaMask? ›

MATIC is commonly bought/traded on centralized and decentralized exchanges as an ERC-20 token, i.e., a token usable on Ethereum. If you want to use these ERC-20 tokens on Polygon itself, you must use a bridge to swap your ERC-20 MATIC 1:1 for Polygon network MATIC (see below).

Does OpenSea track IP address? ›

Thus, when a potential buyer views the NFT on OpenSea, it loads the HTML page and fetches the invisible pixel that reveals a user's IP address and other data like geolocation, browser version and operating system.

What is an NFT wallet address? ›

What is an NFT wallet? These are generally crypto wallets based on a programme that enables NFT enthusiasts to save their digital assets, including NFTs and cryptocurrency. They can access their assets easily through mobile apps or websites. The NFT wallets allow complete authority over digital assets.

What is a transaction hash? ›

A transaction hash/ID (often abbreviated as tx hash or txn hash) is a unique identifier, similar to a receipt, that serves as proof that a transaction was validated and added to the blockchain.

Can you see who owns an NFT? ›

You can see who currently owns the NFT by looking at the "Tokens Transferred From and To" section. The current owner of the NFT in question is shown by the address displayed after "To."

What is the ID number of the NFT? ›

NFT Identifiers

Every NFT is identified by a unique uint256 ID inside the ERC-721 smart contract. This identifying number SHALL NOT change for the life of the contract.

Where are the NFTs stored? ›

NFTs exist on blockchain where they usually serve as an identifier for an asset that exists elsewhere. Some NFTs (the asset and its metadata) are completely stored on the blockchain, but in most cases, the asset is stored on a centralized server. Increasingly, NFTs are being minted to reference assets on IPFS.

Videos

1. ONE OES Contact Address And Polygon Scan Link For Online Verification
(Asset Guide)
2. How to use Polygonscan.com using Celpon....
(Rhemz_venty)
3. How to read and understand Etherscan and Polygonscan
(The 5 Dollar Wrench)
4. Import Polygon NFTs into MetaMask wallet [problem solved]
(Salah Soprano)
5. ✅ How to Get Matic Polygon on Trust Wallet (Step by Step)
(Tech Express)
6. Learn How To Use A Blockchain Explorer | Polygonscan
(DeFi Chronicles)

References

Top Articles
Latest Posts
Article information

Author: Domingo Moore

Last Updated: 11/09/2023

Views: 6646

Rating: 4.2 / 5 (53 voted)

Reviews: 92% of readers found this page helpful

Author information

Name: Domingo Moore

Birthday: 1997-05-20

Address: 6485 Kohler Route, Antonioton, VT 77375-0299

Phone: +3213869077934

Job: Sales Analyst

Hobby: Kayaking, Roller skating, Cabaret, Rugby, Homebrewing, Creative writing, amateur radio

Introduction: My name is Domingo Moore, I am a attractive, gorgeous, funny, jolly, spotless, nice, fantastic person who loves writing and wants to share my knowledge and understanding with you.